3.集合M={x|x2-px+6=0},N={x|x2-x-p=0},若M∩N={2},則集合M∪N={-1,2,3}.

分析 由M與N的交集,得到x=2為兩集合中方程的解,把x=2代入確定出M與N,即可求出兩集合的并集.

解答 解:∵M(jìn)={x|x2-px+6=0},N={x|x2-x-p=0},且M∩N={2},
∴2是兩方程的解,
把x=2代入M中方程得:4-2p+6=0,即p=5,此時(shí)M={x|x2-px+6=0}={x|(x-2)(x-3)=0}={2,3},
把x=2代入N中方程得:4-2-p=0,即p=2,此時(shí)N={x|x2-x-2=0}={x|(x-2)(x+1)=0}={-1,2},
則M∪N={-1,2,3},
故答案為:{-1,2,3}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,以及并集及其運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)α,β是兩個(gè)不同的平面,l是直線,以下命題不正確的是( 。
A.若l∥α,α⊥β,則l∥βB.若l∥α,α∥β,則l∥β或l⊆β
C.若l⊥α,α∥β,則l⊥βD.若l⊥α,α⊥β,則l∥β或l⊆β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線AB與PQ的位置關(guān)系( 。
A.平行B.垂直C.重合D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知拋物線y2=4px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.求滿足${({\frac{1}{3}})^{{x^2}-15}}$>3-2X的x的取值集合是(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在長(zhǎng)方體ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=3,點(diǎn)M在A1C1上,|MC1|=2|A1M|,N在D1C上且為D1C的中點(diǎn),求M,N兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖是一個(gè)算法流程圖,則輸出的n為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=-$\frac{1}{a}$+$\frac{2}{x}$.
(1)解關(guān)于x的不等式f(x)≥0.
(2)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=${cos^2}x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$
(Ⅰ)寫出f(x)圖象的對(duì)稱中心的坐標(biāo)和單增區(qū)間;
(Ⅱ)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊為a、b、c,若f(A)=0,b+c=2.求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案