6.已知x>0,y>0,且滿足3x+2y=12,求1gx+1gy的最大值.

分析 直接利用對(duì)數(shù)運(yùn)算法則以及基本不等式求解表達(dá)式的最值即可.

解答 解:x>0,y>0,且滿足3x+2y=12,
可得12≥$2\sqrt{6xy}$.即xy≤6,當(dāng)且僅當(dāng)x=2,y=3時(shí)取等號(hào).
1gx+1gy=lg(xy)≤lg6.
1gx+1gy的最大值為:lg6.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則以及基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面關(guān)于集合的表示正確的個(gè)數(shù)是( 。
?①{2,3}≠{3,2};②?{(x,y)|x+y=1}={y|x+y=1};③{x|x>1}={y|y>1}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos($\frac{π}{3}$-$\frac{1}{2}$x).
(1)求f(x)在區(qū)間[0,2π]上的值域;
(2)求f(x)在區(qū)間[0,2π]上的單調(diào)減區(qū)間;
(3)若f(x)向右移φ個(gè)單位得到函數(shù)g(x),g(x)滿足g(x)≤g($\frac{2π}{3}$),求φ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sinα-cosα=$\frac{3}{5}$,則sin2α的值為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\frac{1}{3}$≤a≤1,若函數(shù)f(x)=ax2-2x+1在x∈[1,3]上的最小值為N(a),最大值為M(a).設(shè)g(a)=M(a)-N(a).
(1)求g(a)的函數(shù)解析式;
(2)求g(a)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等比數(shù)列{an}中.若a1+a2=$\frac{1}{3}$,a3+a4=1,則a7+a8+a9+a10=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象向右平移φ個(gè)單位長度,所得函數(shù)y=g(x)的圖象關(guān)y軸對(duì)稱,求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinα=-$\frac{1}{2}$,且α是第三象限角,則:
(1)cosα=-$\frac{\sqrt{3}}{2}$;
(2)tanα=$\frac{\sqrt{3}}{3}$;
(3)若角α滿足:$\frac{π}{2}$<α<9,則角α=$\frac{7π}{6}$.(用弧度表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l方程為2x+(m-3)y-2m+6=0(m≠3).
(1)當(dāng)m為何值時(shí),直線l的斜率為-1?
(2)當(dāng)m為何值時(shí),直線l在x軸上的截距為-2?

查看答案和解析>>

同步練習(xí)冊答案