14.設(shè)函數(shù)f(x)=(x+a)lnx+b,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+y-2=0
(1)求y=f(x)的解析式;
(2)證明:$\frac{f(x)-1}{x-{e}^{x}}$<1.

分析 (1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義建立方程關(guān)系即可求y=f(x)的解析式;
(2)將不等式進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值即可證明:$\frac{f(x)-1}{x-{e}^{x}}$<1.

解答 解:(1)因?yàn)?{f^'}(x)=lnx+\frac{x+a}{x}$,所以f′(1)=1+a=-1,所以a=-2
又點(diǎn)(1,f(1))在切線x+y-2=0上,所以1+b-2=0,所以b=1
所以y=f(x)的解析式為f(x)=(x-2)lnx+1.….(4分)
(2)令g(x)=x-ex,(x>0)
因?yàn)間′(x)=1-ex所以當(dāng)x>0時(shí),g′(x)<0
所以g(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減,
所以g(x)<g(0)=-1<0
所以$\frac{f(x)-1}{g(x)}<1$等價(jià)于f(x)-1>g(x).….(6分)
我們?nèi)绻軌蜃C明f(x)-1>-1,即f(x)>0即可證明目標(biāo)成立.
下面證明:對(duì)任意x∈(0,+∞),f(x)>0.
由(1)知${f^'}(x)=lnx+\frac{x-2}{x}$,令$h(x)=lnx+\frac{x-2}{x}(x>0)$
則$h'(x)=\frac{1}{x}+\frac{2}{x^2}>0$,所以h(x)在(0,+∞)內(nèi)單調(diào)遞增,
又h(1)=-1<0,h(2)=ln2>0,所以存在x0∈(1,2)使得h(x0)=0.
當(dāng)0<x<x0時(shí),h(x)<0即f′(x)<0,此時(shí)f(x)單調(diào)遞減;
當(dāng)x>x0時(shí),h(x)>0即f′(x)>0,此時(shí)f(x)單調(diào)遞增;
所以f(x)≥f(x0)=(x0-2)lnx0+1.由f′(x0)=0得$ln{x_0}=\frac{2}{x_0}-1$
所以f(x)≥f(x0)=(x0-2)lnx0+1=(x0-2)($\frac{2}{{x}_{0}}$-1)+1=5-(x0+$\frac{4}{{x}_{0}}$).
令$r(x)=x+\frac{4}{x}(1<x<2)$,則r′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{(x-2)(x+2)}{{x}^{2}}$<0
所以r(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,所以r(x)<r(1)=5
所以f(x)>5-(x+$\frac{4}{x}$)>5-5=0.
綜上,對(duì)任意x∈(0,+∞),$\frac{f(x)-1}{g(x)}<1$.….(12分)

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)的幾何意義以及構(gòu)造函數(shù)是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.a(chǎn),b,c,d四名運(yùn)動(dòng)員爭奪某次賽事的第1,2,3,4名,比賽規(guī)則為:通過抽簽,將4人分為甲、乙兩個(gè)小組,每組兩人.第一輪比賽(半決賽):兩組各自在組內(nèi)進(jìn)行一場(chǎng)比賽,決出各組的勝者和負(fù)者;第二輪比賽決賽:兩組中的勝者進(jìn)行一場(chǎng)比賽爭奪1,2名,兩組中的負(fù)者進(jìn)行一場(chǎng)比賽爭奪第3,4名.四名選手以往交手的勝負(fù)情況累計(jì)如下表:
  a b c d
 a  a13勝26負(fù) a20勝10負(fù) a21勝21負(fù)
 b b26勝13負(fù)  b14勝28負(fù) b19勝19負(fù)
 c c10勝20負(fù) c28勝14負(fù)  c18勝18負(fù)
 d d21勝21負(fù) d19勝19負(fù) d18勝18負(fù) 
若抽簽結(jié)果為甲組:a,c;乙組:b,d.每場(chǎng)比賽中,雙方以往交手各自獲勝的頻率作為獲勝的概率.
(Ⅰ)求c獲得第1名的概率;
(Ⅱ)求c的名次X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}{x>1}\end{array}\\ \begin{array}{l}{-{x^2}+2x,}{x≤1}\end{array},\end{array}\right.$則f(f(3))=-3,函數(shù)f(x)的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4}&{x>0}\\{2x}&{x≤0}\end{array}}\right.$,則f[f(1)]的值為( 。
A.-6B.0C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x${\;}^{\frac{1}{2}}$,則f(-$\frac{5}{2}$)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x>0)}\\{f(-x)+1(x<0)}\end{array}\right.$,則f(-2)=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=6,sinA=$\frac{\sqrt{3}}{3}$,B=A+$\frac{π}{2}$;
(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“a<0”是“函數(shù)y=x2-2ax在區(qū)間[1,+∞)上遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai,若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案