4.過(guò)焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1的右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F(xiàn)1是橢圓的左焦點(diǎn),若△AF1B的周長(zhǎng)為20,則實(shí)數(shù)m的值為(  )
A.5B.25C.10D.100

分析 由題意可得橢圓的a=$\sqrt{m}$,由橢圓的定義可得AF1+AF2=BF1+BF2=2a,可得△AF1B的周長(zhǎng)為4a,解方程可得m.

解答 解:由題意可得橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1的a=$\sqrt{m}$,b=4,
由橢圓的定義可得AF1+AF2=BF1+BF2=2a,
即有△AF1B的周長(zhǎng)為AB+AF1+AF2=AF1+AF2+BF1+BF2=4a,
由4$\sqrt{m}$=20,解得m=25.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的定義、方程和性質(zhì),主要考查橢圓定義法的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{2}$.
(1)求證:BD⊥平面PAC;
(2)求二面角P-CD-B的大。
(3)求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C1,拋物線C2的焦點(diǎn)均在x軸上,從兩條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)混合記錄于下表中:
x-$\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C1右焦點(diǎn)F的直線l與此橢圓相交于A,B兩點(diǎn),若點(diǎn)P為直線x=4上任意一點(diǎn).
①求證:直線PA,PF,PB的斜率成等差數(shù)列;
②若點(diǎn)P在x軸上,設(shè)$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值時(shí)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知點(diǎn)P是橢圓C1:$\frac{{x}^{2}}{4}$+y2=1上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓C1的左、右焦點(diǎn),橢圓C2以橢圓C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C1的焦點(diǎn)坐標(biāo)、離心率及PF1的最大值;
(2)求橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,直線l與x軸交于點(diǎn)E,與橢圓C交于A、B兩點(diǎn).當(dāng)直線l垂直于x軸且點(diǎn)E為橢圓C的右焦點(diǎn)時(shí),弦AB的長(zhǎng)為$\sqrt{2}$.
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)E,使得$\frac{1}{|EA{|}^{2}}+\frac{1}{|EB{|}^{2}}$為定值?若存在,請(qǐng)指出點(diǎn)E的坐標(biāo),并求出該定值;若不存在,請(qǐng)說(shuō)明理由.≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知點(diǎn)M是橢圓$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn),且△F1MF2的面積等于8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓的中心是原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{2}}{2}$,短軸長(zhǎng)為2,定點(diǎn)A(2,0).
(Ⅰ)求橢圓方程;
(Ⅱ)過(guò)橢圓右焦點(diǎn)F的直線與橢圓交于點(diǎn)M、N,當(dāng)|MN|最小時(shí),求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知傾斜角為45°的直線l過(guò)拋物線y2=4x的焦點(diǎn),且與拋物線交于A,B兩點(diǎn),則△OAB(其中O為坐標(biāo)原點(diǎn))的面積為(  )
A.2B.$2\sqrt{2}$C.$3\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為振興蘇區(qū)發(fā)展,贛州市2016年計(jì)劃投入專項(xiàng)資金加強(qiáng)紅色文化基礎(chǔ)設(shè)施改造.據(jù)調(diào)查,改造后預(yù)計(jì)該市在一個(gè)月內(nèi)(以30天記),紅色文化旅游人數(shù)f(x)(萬(wàn)人)與日期x(日)的函數(shù)關(guān)系近似滿足:$f(x)=3-\frac{1}{20}x$,人均消費(fèi)g(x)(元)與日期x(日)的函數(shù)關(guān)系近似滿足:g(x)=60-|x-20|.
(1)求該市旅游日收入p(x)(萬(wàn)元)與日期x(1≤x≤30,x∈N*)的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),該市旅游日收入p(x)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案