已知下表是月份x與y用電量(單位:萬度)之間的一組數(shù)據(jù):
x23456
y34689
(1)畫出散點(diǎn)圖;
(2)如果y對x有線性相關(guān)關(guān)系,求回歸方程;
(3)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);
(4)預(yù)測12月份的用電量.附:線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x
,其中
.
x
,
.
y
為樣本平均值,線性回歸方程也可寫為
y
=
b
x+
a
考點(diǎn):回歸分析
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)以月份為x軸,用電量為y軸,根據(jù)表格數(shù)據(jù),可得散點(diǎn)圖;
(2)計(jì)算系數(shù),即可得到線性回歸方程;
(3)k>0,變量之間是正相關(guān);
(4)利用線性回歸方程,可預(yù)測12月份的用電量.
解答: 解:(1)散點(diǎn)圖如圖:
(2)
.
x
=
2+3+4+5+6
5
=4,
.
y
=
3+4+6+8+9
5
=6,
b
=
136-5×4×6
90-5×16
=
8
5
,a=-
2
5
,
∴y=
8
5
x-
2
5
;
(3)∵k>0,
∴變量之間是正相關(guān);
(4)x=12時(shí),y=
8
5
×12-
2
5
=
94
5
點(diǎn)評:本題考查線性回歸知識,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,且雙曲線的一條漸近線被圓(x-3)2+y2=8截得的弦長為4,則此雙曲線的漸近線方程為( 。
A、y=±2x
B、y=±
2
5
5
x
C、y=±
66
3
x
D、y=±2
6
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)∠A,∠B,∠C是△ABC的三個(gè)內(nèi)角,且tanA、
5
12
、tanB成等差數(shù)列,tanA、
6
6
、tanB成等比數(shù)列,則△ABC是( 。
A、銳角三角形
B、等邊三角形
C、鈍角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)正四面體紙盒的俯視圖如圖所示,其中四邊形ABCD是邊長為3
2
的正方形,若在該正四面體紙盒內(nèi)放一個(gè)正方體,使正方體可以在紙盒內(nèi)任意轉(zhuǎn)動(dòng),則正方體棱長的最大值為( 。
A、
2
B、1
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線x2=2y在點(diǎn)(2,2)處的切線平行,則此雙曲線的離心率為( 。
A、
5
B、
5
2
C、
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x2+x
(1)求在x=1處的切線方程;
(2)求過點(diǎn)P(1,1)的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1
x-2

(1)寫出函數(shù)f(x)的對稱中心;
(2)若x≥3,求f(x)的取值范圍;
(3)若將f(x)的圖象沿x軸水平向左平移兩個(gè)單位,再向下平移一個(gè)單位,得到g(x)的圖象,求出g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=AD=6,側(cè)棱AA1=4,E,F(xiàn),G分別是AB,AD,AA1的中點(diǎn).
(1)求證:平面EFG∥平面B1CD1
(2)求異面直線EF與B1C間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足2n2-(λ+an)n+
3
2
an=0(λ∈R,n∈N*);等比數(shù)列{bn}的首項(xiàng)為b1=2,公比為q(q為正整數(shù)),且滿足3b3是8b1與b5的等差中項(xiàng).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)試確定λ的值,使得數(shù)列{an}為等差數(shù)列;
(3)當(dāng){an}為等差數(shù)列時(shí),對每個(gè)正整數(shù)k,在bk與bk+1之間插入ak個(gè)2,得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn} 的前n項(xiàng)和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案