20.已知函數(shù)f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3個不同的實數(shù)解,則實數(shù)m的取值范圍是( 。
A.$({-\frac{31}{2},3}]$B.$({3,\frac{31}{2}}]$C.$({-∞,-3})∪({\frac{31}{2},+∞})$D.$({-∞,3})∪({\frac{31}{2},+∞})$

分析 函數(shù)f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3個不同的實數(shù)解,則g(x)=x3-mx-2在x∈[-4,4]恰有3個不同的零點,進(jìn)而求出函數(shù)的兩個極值點,根據(jù)極大值為正,極小值為負(fù),g(-4)不大于0,g(4)不小于0,可得實數(shù)m的取值范圍.

解答 解:∵函數(shù)f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3個不同的實數(shù)解,
∴g(x)=x3-mx-2在x∈[-4,4]恰有3個不同的零點,
g′(x)=3x2-m=0時,x=$±\sqrt{\frac{m}{3}}$,
故m>0,且$\sqrt{\frac{m}{3}}<4$,即0<m<48,
且$\left\{\begin{array}{l}g(-4)≤0\\ g(-\sqrt{\frac{m}{3}})>0\\ g(\sqrt{\frac{m}{3}})<0\\ g(4)≥0\end{array}\right.$,即$\left\{\begin{array}{l}-66+4m≤0\\ \frac{2m}{9}\sqrt{3m}-2>0\\-\frac{2m}{9}\sqrt{3m}-2<0\\ 62-4m≥0\end{array}\right.$,
解得:m∈$(3,\frac{31}{2}]$,
故選:B.

點評 本題考查的知識點是根的存在性及根的個數(shù)判斷,熟練掌握方程根與對應(yīng)函數(shù)零點之間的關(guān)系是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.要使G•P數(shù)列10${\;}^{\frac{1}{n}}$,10${\;}^{\frac{2}{n}}$,…10${\;}^{\frac{n}{n}}$,…的前n項積超過105,那么n的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正方體ABCD-A′B′C′D′中,過對角線BD'的一個平面交AA′于點E,交CC′于點F.則下列結(jié)論正確的是(  )
①四邊形BFD′E一定是平行四邊形    
②四邊形BFD′E有可能是正方形
③四邊形BFD′E在底面ABCD的投影一定是正方形
④四邊形BFD′E有可能垂于于平面BB′D.
A.①②③④B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$,點(1,$\frac{\sqrt{2}}{2}$)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過F1的直線與橢圓相較于P、Q兩點,設(shè)△PQF2內(nèi)切圓的面積為S,求S最大時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:2x-y=3,若矩陣A=$(\begin{array}{l}{-1}&{a}\\&{3}\end{array})$a,b∈R所對應(yīng)的變換σ把直線l變換為它自身.
(Ⅰ)求矩陣A;                  
(Ⅱ)求矩陣A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系中,若$\left\{\begin{array}{l}{x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,則$\sqrt{(x+1)^{2}+{y}^{2}}$的最小值是( 。
A.$\sqrt{5}$B.$\frac{3\sqrt{2}}{2}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={x|-1<x<1},N={x|x(x-2)<0},則M∩N為( 。
A.(-1,2)B.(0,1)C.(-1,0)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q(q>0),且滿足a1=b1=1,a2=b3,a6=b
5
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和為Tn,求證:$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知平面α與平面β相交于直線n,且不垂直,直線m?β,且m與n相交,點A∉α,l為過點A的一條動直線,那么下列情形可能出現(xiàn)的是(  )
A.l∥m且l⊥αB.l⊥m且l⊥αC.l⊥m且l∥αD.l∥m且l∥α

查看答案和解析>>

同步練習(xí)冊答案