A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 利用已知條件求出雙曲線方程,然后通過其它體積求出雙曲線的標準方程,即可判斷選項.
解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1滿足彖件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);(2)離心率為$\frac{5}{3}$,
可得c=5,a=3,可得b=4,
可得雙曲線方程為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.
雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1滿足彖件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);①雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上的任意點P都滿足||PF1|-|PF2||=6,可得c=5,a=3,可得b=4,
可得雙曲線方程為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.①滿足題意.
雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1滿足彖件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);②雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的虛軸長為4,可得b=2,顯然不滿足題意.
雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1滿足彖件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);③雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個頂點與拋物線y2=6x的焦點重合,拋物線的焦點坐標($\frac{3}{2}$,0),a=$\frac{3}{2}$≠3,顯然不滿足題意.
雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1滿足彖件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);④雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為4x±3y=0.可得$\frac{a}=\frac{4}{3}$,c=5,解得a=3可得b=4,
可得雙曲線方程為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.
故選:B.
點評 本題考查雙曲線的簡單性質(zhì),標準方程的求法,命題的真假的判斷,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | ±4$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48 | B. | 24 | C. | 12 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | 0 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,0)∪(3,+∞) | B. | (-∞,-3)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(0,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com