2.六本不同的書,按照以下要求處理,各有幾種分法?
(1)分三堆,一堆一本,一堆兩本,一堆三本;
(2)甲得一本,乙得兩本,丙得三本;
(3)一人得一本,一人得兩本,一人得三本;
(4)平均分給甲、乙、丙三人,每人兩本;
(5)平均分成三堆,每堆兩本.

分析 根據(jù)分組分配問題的原則,先合理的分組,再分配即可,注意平均分組的問題

解答 解:(1)無序不均勻分組問題.先選1本有C16種選法;再從余下的5本中選2本有C25種選法;最后余下3本全選有C33種方法,故共有C16C25C33=60種.
(2)甲選1本有C16種選法;乙再從余下的5本中選2本有C25種選法;丙最后余下3本全選有C33種方法,故共有C16C25C33=60種
(3)在第(1)題基礎(chǔ)上,還應(yīng)考慮再分配,共有C16C25C33A33=360種,
(4)有序均勻分組,6本不同的書平均分成三堆,有$\frac{{C}_{6}^{2}{C}_{4}^{2}}{{A}_{3}^{3}}$=15種分堆方法,由于甲、乙、丙是不同的三人,還應(yīng)考慮再分配,共有15A33=90種
(5)有序均勻分組,6本不同的書平均分成三堆,有$\frac{{C}_{6}^{2}{C}_{4}^{2}}{{A}_{3}^{3}}$=15種分堆方法.

點(diǎn)評 本題考查排列、組合及簡單計(jì)數(shù)問題,正確區(qū)分無序不均勻分組問題.有序不均勻分組問題.無序均勻分組問題.是解好組合問題的一部分;本題考查計(jì)算能力,理解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,M,N是函數(shù)y=2sin(ωx+ϕ)(ω>0)圖象與x軸的交點(diǎn),點(diǎn)P在M,N之間的圖象上運(yùn)動(dòng),當(dāng)△MPN面積最大時(shí),PM⊥PN,則ω=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有一個(gè)五邊形ABCDE,若把頂點(diǎn)A,B,C,D,E涂上紅、黃、綠三種顏色中的一種,使得相鄰的頂點(diǎn)所涂的顏色不同,則共有30種不同的涂色方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.兩游艇自某地同時(shí)出發(fā),一艇以10km/h的速度向正北行駛,另一艇以7km/h的速度向東北方向行駛,問:經(jīng)過40min,兩艇相距多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三角形的一個(gè)內(nèi)角為60°是這個(gè)三角形三內(nèi)角成等差數(shù)列的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM,N是AM上任一點(diǎn).
(1)求證:DM⊥BM;
(2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E-AM-D的余弦值$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓$\frac{{x}^{2}}{4}$+y2=1的所有內(nèi)接菱形構(gòu)成的集合為F.
(1)求F中菱形的最小面積.
(2)是否存在定圓與F中的菱形都相切?若存在,求出定圓的方程;若不存在,說明理由.
(3)當(dāng)菱形的一邊經(jīng)過橢圓的右焦點(diǎn)時(shí),求這條邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y>0,且x+y=1,則$\frac{1}{2x+1}$+$\frac{4}{2y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C的對邊為a,b,c,已知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1.
(I)求角C的值.
(Ⅱ)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b.

查看答案和解析>>

同步練習(xí)冊答案