分析 (1)根據(jù)角平分線定理便有$\frac{BD}{DC}=\frac{2}{1}$,從而$\frac{BD}{BC}=\frac{2}{3}$,從而便可得到$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$,兩邊平方后進行數(shù)量積的運算,便可求出AD;
(2)由$\overrightarrow{AE}=x\overrightarrow{AB},\overrightarrow{AF}=y\overrightarrow{AC}$便可得出$\overrightarrow{AD}=\frac{1}{3x}\overrightarrow{AE}+\frac{2}{3y}\overrightarrow{AF}$,而根據(jù)E,D,F(xiàn)三點共線便可得出$\frac{1}{3x}+\frac{2}{3y}=1$,從而得出$\frac{1}{x}+\frac{2}{y}=3$.
解答 解:(1)根據(jù)角平分線定理:$\frac{BD}{DC}=\frac{AB}{AC}=\frac{2}{1}$;
∴$\frac{BD}{BC}=\frac{2}{3}$;
∴$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{2}{3}(\overrightarrow{AC}-\overrightarrow{AB})=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$;
∴${\overrightarrow{AD}}^{2}=\frac{1}{9}{\overrightarrow{AB}}^{2}+\frac{4}{9}\overrightarrow{AB}•\overrightarrow{AC}+\frac{4}{9}{\overrightarrow{AC}}^{2}$=$\frac{4}{9}-\frac{4}{9}+\frac{4}{9}=\frac{4}{9}$;
∴$|\overrightarrow{AD}|=\frac{2}{3}$;
即AD=$\frac{2}{3}$;
(2)證明:$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{1}{3x}\overrightarrow{AE}+\frac{2}{3y}\overrightarrow{AF}$;
∵E,D,F(xiàn)三點共線;
∴$\frac{1}{3x}+\frac{2}{3y}=1$;
∴$\frac{1}{x}+\frac{2}{y}=3$.
點評 考查角平分線定理,向量加法、減法,及數(shù)乘的幾何意義,以及三點A,B,C共線時,若$\overrightarrow{OB}=x\overrightarrow{OA}+y\overrightarrow{OC}$,則x+y=1,數(shù)量積的運算及其計算公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x≤1 } | B. | {x|-1≤x<1} | C. | {x|-1≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | C. | $±\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2+y2+3x+6y=0 | B. | x2+y2-3x+6y=0 | C. | x2+y2+3x-6y=0 | D. | x2+y2-3x-6y=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com