5.在圓x2+y2=16上任取一點P,過點P作x軸的垂線段PD,D為垂足,當點P在圓上運動時,線段PD的中點M的軌跡方程是(  )
A.$\frac{x^2}{4}+y{\;}^2=1$B.x2+y2=4C.$\frac{x^2}{16}+\frac{y^2}{4}=1$D.$\frac{y^2}{16}+\frac{x^2}{4}=1$

分析 設出M點的坐標,由M為線段PD的中點得到P的坐標,把P的坐標代入圓x2+y2=16整理得線段PD的中點M的軌跡.

解答 解:設M(x,y),由題意D(x,0),P(x,y1
∵M為線段PD的中點,∴y1+0=2y,y1=2y.
又∵P(x,y1)在圓x2+y2=16上,∴x2+y12=16,
∴x2+4y2=16,即$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1.
∴點M的軌跡方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1.
故選:C.

點評 本題考查了軌跡方程的求法,訓練了利用代入法求曲線的方程,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.兩條異面直線是指( 。
A.空間中兩條不相交的直線
B.不同在任何一個平面內(nèi)的兩條直線
C.分別在兩個平面內(nèi)的兩條直線
D.平面內(nèi)的一條直線和平面外的一條直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.cos66°sin69°+sin114°sin21°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,己知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t為參數(shù)),在以坐標原
點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2的極坐標方程是ρ=2,求曲線C1與C2的交點在直角坐標系中的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d為整數(shù),且ak=k2+2,a2k=(k+2)2,其中k為常數(shù)且k∈N*
(1)求k及an
(2)設a1>1,{an}的前n項和為Sn,等比數(shù)列{bn}的首項為l,公比為q(q>0),前n項和為Tn,若存在正整數(shù)m,使得$\frac{{S}_{2}}{{S}_{m}}={T}_{3}$,求q.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線x+y+1=0的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線C:|x|+|y|=m(m>0).
(1)若m=1,則由曲線C圍成的圖形的面積是2;
(2)曲線C與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$有四個不同的交點,則實數(shù)m的取值范圍是2<m<3或$m=\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.甲、乙兩種商品在過去一段時間內(nèi)的價格走勢如圖所示.假設某人持有資金120萬元,他可以在t1至t4的任意時刻買賣這兩種商品,且買賣能夠立即成交(其他費用忽略不計).如果他在t4時刻賣出所有商品,那么他將獲得的最大利潤是( 。
A.40萬元B.60萬元C.120萬元D.140萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=DA,E,F(xiàn)分別是AB、PD的中點.
(1)求證:PC⊥BD;
(2)求證:AF∥平面PEC;
(3)M為線段BC的中點,求證AF⊥平面PDM.

查看答案和解析>>

同步練習冊答案