14.如圖,在△ABC中,點(diǎn)D、E分別在AB、AC邊上,DE∥BC,若AD:AB=3:4,AE=6,則AC等于( 。
A.3B.4C.6D.8

分析 首先由DE∥BC可以得到AD:AB=AE:AC,而AD:AB=3:4,AE=6,由此即可求出AC.

解答 解:∵DE∥BC,
∴△ADE∽△ABC,
∴AD:AB=AE:AC,
而AD:AB=3:4,AE=6,
∴3:4=6:AC,
∴AC=8.
故選D.

點(diǎn)評(píng) 本題主要考查平行線分線段成比例定理,對(duì)應(yīng)線段一定要找準(zhǔn)確,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果a、b、c、d∈R,則下列命題中正確的是( 。
A.若a>b,c>b,則a>cB.若a>-b,則c-a<c+b
C.若a>b,則ac2>bc2D.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,矩形ABCD中,AB=2AD=2,E為邊AB的中點(diǎn),將△ADE沿直線DE翻折成△A1DE.若M為線段A1C的中點(diǎn),在△ADE翻折的過程中,有下列命題:
①BM是定值;
②點(diǎn)M在表面積為5π的球面上運(yùn)動(dòng);
③存在某個(gè)位置,使DE⊥A1C;
④存在某個(gè)位置,使MB∥平面A1DE;
⑤三棱錐A1-CDE體積的最大值是$\frac{\sqrt{2}}{6}$.
其中,所有正確命題的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知[x]表示不超過x的最大整數(shù)(x∈R),如[-1.3]=-2,[0.8]=0,[3.4]=3,定義{x}=x-[x],給出下列命題,其中正確的是①③④.
①函數(shù)y={x}的周期為1.
②函數(shù)y={x}的定義域?yàn)镽,值域?yàn)閇0,1].
③在平面上,由滿足[x]2+[y]2=50的點(diǎn)(x,y)所形成的圖形的面積是12.
④設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\{x\},x≥0}\\{f(x+1),x<0}\end{array}\right.$,則函數(shù)y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$有3個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐的三條棱兩兩互相垂直,長(zhǎng)度分別為6,4,4,則其頂點(diǎn)到底面的距離為( 。
A.$\frac{14}{3}$B.2$\sqrt{17}$C.$\frac{6\sqrt{22}}{11}$D.$\frac{2\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.平面上有A(2,-1),B(1,4),D(4,-3)三點(diǎn),點(diǎn)C在直線AB上,且$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{BC}$,連接DC延長(zhǎng)至E,使|$\overrightarrow{CE}$|=$\frac{1}{4}$|$\overrightarrow{ED}$|,則點(diǎn)E的坐標(biāo)為($\frac{8}{3}$,-7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若$\frac{a}$+$\frac{2b}{a}$=3cosC,則$\frac{sin(A-B)}{sinC}$的值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知lg2y+(2x+1+2-x+1)lgy+(22x+1+2-2x+1)=0,求x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.比較下列各組兩個(gè)式子的大。
(1)(x-2)2和1-4x;
(2)(x-1)(x+5)和(x+1)2

查看答案和解析>>

同步練習(xí)冊(cè)答案