分析 由已知條件和正弦定理以及三角函數(shù)公式可得sin2B=sin2C,可得2B=2C或2B+2C=π,化簡可判三角形形狀.
解答 解:∵在△ABC中,$\frac{b^2}{c^2}=\frac{tanB}{tanC}$,∴b2tanC=c2tanB,
∴由正弦定理可得sin2B•$\frac{sinC}{cosC}$=sin2C•$\frac{sinB}{cosB}$,
約掉sinBsinC變形可得sinBcosB=sinCcosC,
∴sin2B=sin2C,故2B=2C或2B+2C=π,
故B=C或B+C=$\frac{π}{2}$,
∴△ABC為等腰三角形或直角三角形
故答案為:等腰三角形或直角三角形
點評 本題考查三角形形狀的判定,涉及正弦定理和三角函數(shù)公式,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {y|y≥-4} | B. | {y|-1≤y≤5} | C. | {y|-4≤y≤-1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分且不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com