6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,則f(f(1))=0.

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,將x=1代入可得:則f(f(1))值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,
∴f(f(1))=f(-1)=0.
故答案為:0.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x-1,則f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的大小關(guān)系是( 。
A.f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$)B.f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$)C.f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$)D.f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)在(-4,7)上是增函數(shù),則使y=f(x-3)+2為增函數(shù)的區(qū)間為( 。
A.(-2,3)B.(-1,7)C.(-1,10)D.(-10,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.兩條平行直線(xiàn)l1:3x-2y-1=0,l2:3x-2y+1=0的距離是( 。
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{{\sqrt{13}}}{13}$C.$\frac{1}{13}$D.$\frac{2}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)A(-3,5),B(2,15),直線(xiàn)l:3x-4y+4=0.
(1)求過(guò)A點(diǎn)與直線(xiàn)l平行的直線(xiàn)方程;
(2)若P點(diǎn)在直線(xiàn)l上,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過(guò)右焦點(diǎn)F2的直線(xiàn)交橢圓于A、B兩點(diǎn),且AF2=2F2B,tan∠AF1B=$\frac{3}{4}$,則該橢圓的離心率等于$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示為二次函數(shù)y=ax2+bx+c的圖象,則|OA|•|OB|等于( 。
A.$\frac{c}{a}$B.-$\frac{c}{a}$C.±$\frac{c}{a}$D.-$\frac{a}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2+i}{1-i}$,則其共軛復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=loga|x|(a>0且a≠1)在(0,+∞)上遞增,則f(-2)與f(a+1)的大小關(guān)系為f(-2)<f(a+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案