A. | f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$) | B. | f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$) | C. | f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$) | D. | f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$) |
分析 根據(jù)函數(shù)y=f(x+1)是偶函數(shù)得到函數(shù)關(guān)于x=1對(duì)稱,然后利用函數(shù)單調(diào)性和對(duì)稱之間的關(guān)系,進(jìn)行比較即可得到結(jié)論.
解答 解:∵y=f(x+1)是偶函數(shù),
∴f(-x+1)=f(x+1),
即函數(shù)f(x)關(guān)于x=1對(duì)稱.
∵當(dāng)x≥1時(shí),f(x)=2x-1為增函數(shù),
∴當(dāng)x≤1時(shí)函數(shù)f(x)為減函數(shù).
∵f($\frac{3}{2}$)=f($\frac{1}{2}$+1)=f(-$\frac{1}{2}$+1)=f($\frac{1}{2}$),且$\frac{1}{3}$<$\frac{1}{2}$<$\frac{2}{3}$,
∴f($\frac{1}{3}$)>f($\frac{3}{2}$)>f($\frac{2}{3}$),
故選:A.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,根據(jù)條件求出函數(shù)的對(duì)稱性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
人數(shù)xi | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù)yi | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com