10.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,求$μ=\frac{xy}{{x}^{2}+{y}^{2}}$的最小值.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用換元法結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:則x>0,y>0,
則$μ=\frac{xy}{{x}^{2}+{y}^{2}}$=$\frac{\frac{y}{x}}{1+(\frac{y}{x})^{2}}$=$\frac{1}{\frac{y}{x}+\frac{1}{\frac{y}{x}}}$,
設(shè)k=$\frac{y}{x}$,則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的斜率,
由圖象知OA的斜率最大,OC的斜率最小,
由$\left\{\begin{array}{l}{y-2=0}\\{x+2y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
則kOA=2,kOC=$\frac{1}{3}$,
即$\frac{1}{3}$≤k≤2,
∵μ=$\frac{1}{k+\frac{1}{k}}$,
∴2≤k+$\frac{1}{k}$≤$\frac{10}{3}$,
$\frac{3}{10}$≤$\frac{1}{k+\frac{1}{k}}$≤$\frac{1}{2}$,
即μ取得最小值為$\frac{3}{10}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用換元法以及直線斜率的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知邊長(zhǎng)為4的菱形ABCD中,∠ABC=60°.將菱形ABCD沿對(duì)角線PA折起得到三棱錐D-ABC,設(shè)二面角D-AC-B的大小為θ.
(1)當(dāng)θ=90°時(shí),求異面直線AD與BC所成角的余弦值;
(2)當(dāng)θ=60°時(shí),求直線AD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,E是PC的中點(diǎn).
(1)求證:PC⊥BD;
(2)若四棱錐P-ABCD的體積為4,求DE與平面PAC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知長(zhǎng)方體ABCD-A1B1C1D1的體積為216,則四面體AB1CD1與四面體A1BC1D的重疊部分的體積為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一個(gè)幾何體的三視圖(單位:m),則該幾何體的體積為44m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知點(diǎn)F(0,1),直線l1:y=-1,直線l1⊥l2于P,連結(jié)PF,作線段PF的垂直平分線交直線l2于點(diǎn)H.設(shè)點(diǎn)H的軌跡為曲線r.
(Ⅰ)求曲線r的方程;
(Ⅱ)過(guò)點(diǎn)P作曲線r的兩條切線,切點(diǎn)分別為C,D,
(。┣笞C:直線CD過(guò)定點(diǎn);
(ⅱ)若P(1,-1),過(guò)點(diǎn)O作動(dòng)直線L交曲線R于點(diǎn)A,B,直線CD交L于點(diǎn)Q,試探究$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$是否為定值?若是,求出該定值;不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z滿足z(1+i)=1(其中i為虛數(shù)單位),則z的共軛復(fù)數(shù)是( 。
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.$\frac{-1+i}{2}$D.$\frac{-1-i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow m$=$({cosx,cos({x+\frac{π}{6}})}),\overrightarrow n$=$({\sqrt{3}sinx$+cosx,2sinx}),且滿足f(x)=$\overrightarrow m•\overrightarrow n$.
(Ⅰ)求函數(shù)f(x)的對(duì)稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到g(x)的圖象,當(dāng)x∈[0,π]時(shí),求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,三棱柱 ABC-A1B1C1 中,AA1⊥平面 A1B1C1,AB=AC=AA1=2,AB⊥AC,D 為 AC 中點(diǎn),點(diǎn) E 在棱 CC1C上,且 AE⊥平面 A1B1D.
(Ⅰ)求 CE 的長(zhǎng);
(Ⅱ)求三棱錐 E-A1BD 的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案