分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用換元法結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:則x>0,y>0,
則$μ=\frac{xy}{{x}^{2}+{y}^{2}}$=$\frac{\frac{y}{x}}{1+(\frac{y}{x})^{2}}$=$\frac{1}{\frac{y}{x}+\frac{1}{\frac{y}{x}}}$,
設(shè)k=$\frac{y}{x}$,則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的斜率,
由圖象知OA的斜率最大,OC的斜率最小,
由$\left\{\begin{array}{l}{y-2=0}\\{x+2y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
則kOA=2,kOC=$\frac{1}{3}$,
即$\frac{1}{3}$≤k≤2,
∵μ=$\frac{1}{k+\frac{1}{k}}$,
∴2≤k+$\frac{1}{k}$≤$\frac{10}{3}$,
$\frac{3}{10}$≤$\frac{1}{k+\frac{1}{k}}$≤$\frac{1}{2}$,
即μ取得最小值為$\frac{3}{10}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用換元法以及直線斜率的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1+i}{2}$ | B. | $\frac{1-i}{2}$ | C. | $\frac{-1+i}{2}$ | D. | $\frac{-1-i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com