17.函數(shù)y=1-cos2x的定義域是( 。
A.(-∞,0]B.[0,+∞)C.[-1,1]D.(-∞,+∞)

分析 由余弦函數(shù)的定義域可得.

解答 解:由余弦函數(shù)的定義域可得2x可取任意實(shí)數(shù),
∴函數(shù)的定義域?yàn)槿w實(shí)數(shù),即(-∞,+∞),
故選:D.

點(diǎn)評 本題考查三角函數(shù)的定義域,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=2sin(x+$\frac{π}{4}$)的圖象,只需將y=f(x)的圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再把縱坐標(biāo)變?yōu)樵瓉淼?倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,若f(-1)=2f(a),則a的值等于( 。
A.$\sqrt{3}$或-$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.-$\frac{\sqrt{2}}{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}中,a1=1,a2=3,an=an-1+$\frac{1}{{a}_{n-2}}$(n≥3),則a4等于( 。
A.$\frac{55}{12}$B.$\frac{13}{3}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}中,a2=6,a5=15,若bn=a2n,求bn及b15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列參數(shù)方程(t為參數(shù))與普通方程x2-y=0表示同一曲線的方程是( 。
A.$\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$B.$\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$
C.$\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$D.$\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過點(diǎn)(1,-2),且與兩坐標(biāo)軸都相切的圓的方程是x-5)2+(y+5)2=25或(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)滿足x2f′(x)+2xf(x)=$\frac{{e}^{x}}{x}$(e為自然對數(shù)的底數(shù)),f(2)=$\frac{{e}^{2}}{8}$,判斷f(x)在(0,+∞)上的極值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)$f(x)=4sin({ωx+\frac{π}{3}})({ω>0})$的最小正周期為π,設(shè)向量$\overrightarrow a=({-1,f(x)})$,$\overrightarrow b=({f({-x}),1})$,$g(x)=\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間$[{\frac{π}{8},\frac{π}{3}}]$上的最大值和最小值;
(3)若x∈[0,2016π],求滿足$\overrightarrow a⊥\overrightarrow b$的實(shí)數(shù)x的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案