2.已知函數(shù)f(x)=x-$\frac{1}{x}$,數(shù)列{an}滿足f(an)=-2n,且an>0 判斷數(shù)列{an}的增減性.

分析 函數(shù)f(x)=x-$\frac{1}{x}$,數(shù)列{an}滿足f(an)=-2n,可得an-$\frac{1}{{a}_{n}}$=-2n,又an>0,解得an=$\sqrt{{n}^{2}+1}$-n.即可判斷出單調(diào)性.

解答 解:∵函數(shù)f(x)=x-$\frac{1}{x}$,數(shù)列{an}滿足f(an)=-2n,
∴an-$\frac{1}{{a}_{n}}$=-2n,又an>0,
解得an=$\sqrt{{n}^{2}+1}$-n.
∴an=$\frac{1}{\sqrt{{n}^{2}+1}+n}$單調(diào)遞減.

點(diǎn)評 本題考查了數(shù)列的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.$\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}\;dx$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin75°=(  )
A.$\frac{\sqrt{6}-\sqrt{3}}{4}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}+\sqrt{3}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在等腰梯形ABDE中,AE=ED=BD=a,當(dāng)?shù)妊菪蜛BDE的面積最大時,角θ為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)的定義域?yàn)镽,f(-1)=2,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,則f(x)>2x+4的解集為(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:
(1)sin($\frac{π}{2}$+α)cos2($\frac{π}{2}$+α)sin(3π-α)tan(π+α);
(2)$\frac{sin(-4π+α)cos(π-α)cos(\frac{π}{2}+α)sin(\frac{11π}{2}-α)}{sin(-\frac{π}{2}-α)cos(3π-α)cos(\frac{9π}{2}+α)sin(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y滿足不等式組$\left\{\begin{array}{l}{x+y-4≥0}\\{x-y+2≥0}\\{2x-y-5≤0}\end{array}\right.$,則z=|x+2y-18|的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an},{bn}滿足:a1=2,b1=2015,且對任意的正整數(shù)n,an,an+1,bn和an+1,bn+1,bn均成等差數(shù)列
(1)證明:{an-bn}和{an+2bn}均成等比數(shù)列
(2)是否存在唯一的正整數(shù)c,使得an<c<bn恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若非零向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|=2|\overrightarrow b|$,則$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角是60°.

查看答案和解析>>

同步練習(xí)冊答案