19.已知集合A={x||x-2|<3,x∈R},B={x|x2+(1-a)x-a<0,x∈R},若B⊆A,求實數(shù)a的取值范圍.

分析 由|x-2|<3,化為:-3<x-2<3,可得:A=(-1,5).由x2+(1-a)x-a<0,化為(x-a)(x+1)<0,對a分類討論,利用集合的運算性質(zhì)即可得出.

解答 解:由|x-2|<3,化為:-3<x-2<3,解得-1<x<5.∴A=(-1,5).
由x2+(1-a)x-a<0,化為(x-a)(x+1)<0,
①當(dāng)a>-1時,解得-1<x<a,∴B=(-1,a),∵B⊆A,∴a≤5,∴-1<a≤5.
②當(dāng)a<-1時,解得a<x<-1,∴B=(a,-1),∵B⊆A,∴a∈∅.
③當(dāng)a=-1時,解得B=∅,滿足B⊆A.
綜上可得:-1≤a≤5.
∴實數(shù)a的取值范圍是:-1≤a≤5.

點評 本題考查了不等式的解法、集合運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-i}{i}$的共軛復(fù)數(shù)所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若角θ滿足sinθ<0且cosθ>0,則角θ在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-2x-3<0,x∈N},B={y|y2=1-x2,x∈A},則A∩B的子集個數(shù)為( 。
A.2B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC中點,SA=4,AB=2.
(1)求三棱錐A-SBD的體積
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實數(shù)x,y滿足x2-4xy+4y2+4x2y2=2,則當(dāng)x+2y的最大值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)等差數(shù)列{an}的公差為d,若數(shù)列{2${\;}^{{a}_{1}{a}_{n}}$}為遞減數(shù)列,則a1d<0(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(cosx-sinx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(cosx+sinx,2cosx).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=1,b=1,△ABC的面積為$\sqrt{3}$,求△ABC的外接圓半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點O為坐標(biāo)原點,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-2,1),若點C與點A關(guān)于直線y=x對稱,則$\overrightarrow{CA}$$•\overrightarrow{BO}$=-3.

查看答案和解析>>

同步練習(xí)冊答案