19.已知復(fù)數(shù)z=$\frac{{1+\sqrt{3}i}}{{\sqrt{3}+i}}$(i為虛數(shù)單位),則復(fù)數(shù)z的共扼復(fù)數(shù)為( 。
A.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$B.$\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$C.$\sqrt{3}-i$D.$\sqrt{3}+i$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,則復(fù)數(shù)z的共扼復(fù)數(shù)可求.

解答 解:由z=$\frac{{1+\sqrt{3}i}}{{\sqrt{3}+i}}$=$\frac{(1+\sqrt{3}i)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)}=\frac{2\sqrt{3}+2i}{4}=\frac{\sqrt{3}+i}{2}$=$\frac{\sqrt{3}}{2}+\frac{1}{2}i$,
得$\overline{z}=\frac{\sqrt{3}}{2}-\frac{1}{2}i$.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共扼復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2sin(x-$\frac{π}{6}$).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f(x)=$\frac{6}{5}$,求cos(x+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若S6=6,S15=75,則數(shù)列$\left\{{\frac{S_n}{n}}\right\}$的前20項(xiàng)和為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1)已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),過F1且與橢圓長軸垂直的直線交橢圓于A、B兩點(diǎn),若△ABF2是正三角形,則這個(gè)橢圓的離心率$\frac{\sqrt{3}}{3}$.
(2)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的二個(gè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0),M是橢圓上一點(diǎn),且$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}M}$=0,則離心率e的取值范圍$\frac{\sqrt{2}}{2}$≤e<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求點(diǎn)D到平面PBC的距離;
(3)當(dāng)平面PBC與平面PDC垂直時(shí),求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ax2+bsinx-acosx為偶函數(shù),其定義域?yàn)閇a-1,2a],則a+b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“2和3都是素?cái)?shù)”的形式是( 。
A.簡單命題B.p∧qC.p∨qD.?p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)過點(diǎn)(0,b)且斜率為1的直線與圓x2+y2+2x=0相切,則b的值為( 。
A.2±$\sqrt{2}$B.2±2$\sqrt{2}$C.1±$\sqrt{2}$D.$\sqrt{2}$±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}中,${a_1}+{a_2}+{a_3}+…+{a_n}={2^n}-1$,則$\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a_3^2}+…+\frac{1}{a_n^2}$=( 。
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.$\frac{1}{3}(4-\frac{1}{{{4^{n-1}}}})$D.$\frac{1}{3}({4^n}-1)$

查看答案和解析>>

同步練習(xí)冊答案