14.已知函數(shù)$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中a=7,若銳角A滿(mǎn)足$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$,且$sinB+sinC=\frac{{13\sqrt{3}}}{14}$,求△ABC的面積.

分析 (1)運(yùn)用二倍角的正弦公式和余弦公式,以及兩角和的正弦公式,由正弦函數(shù)的周期公式及單調(diào)遞減區(qū)間,解不等式可得;
(2)由條件$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$,可得角A,再運(yùn)用正弦定理可得b+c=13,由余弦定理,可得bc=40,由三角形的面積公式計(jì)算即可得到所求.

解答 解:(1)$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}=sin2x+\sqrt{3}cos2x$=$2sin(2x+\frac{π}{3})$,
因此f(x)的最小正周期為$T=\frac{2π}{2}=π$.
由$2kπ+\frac{π}{2}≤2x+\frac{π}{3}≤2kπ+\frac{3π}{2}$,可得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
即f(x)的單調(diào)遞減區(qū)間為$x∈[kπ+\frac{π}{12},kπ+\frac{7π}{12}]$(k∈Z);
(2)由$f(\frac{A}{2}-\frac{π}{6})=2sin(2(\frac{A}{2}-\frac{π}{6})+\frac{π}{3})=2sinA=\sqrt{3}$,
又A為銳角,則$A=\frac{π}{3}$.
由正弦定理可得$2R=\frac{a}{sinA}=\frac{7}{{\frac{{\sqrt{3}}}{2}}}=\frac{14}{{\sqrt{3}}}$,
$sinB+sinC=\frac{b+c}{2R}=\frac{{13\sqrt{3}}}{14}$,
則$b+c=\frac{{13\sqrt{3}}}{14}•\frac{14}{{\sqrt{3}}}=13$,
由余弦定理可知,$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{{(b+c)}^2}-2bc-{a^2}}}{2bc}=\frac{1}{2}$,
可求得bc=40,
故${S_{△ABC}}=\frac{1}{2}bcsinA=10\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的化簡(jiǎn)運(yùn)算,以及三角函數(shù)的性質(zhì),并借助正弦和余弦定理考查邊角關(guān)系的運(yùn)算,對(duì)考生的化歸與轉(zhuǎn)化能力有較高要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿(mǎn)足$\overrightarrow{a}$$+\overrightarrow$$+\overrightarrow{c}$=$\overrightarrow{0}$,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,|$\overrightarrow{c}$|=4,則$\overrightarrow{a}$$•\overrightarrow$=( 。
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-\overrightarrow$垂直,則m=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( 。
A.(1,$\frac{4}{3}$)B.($\frac{2}{3}$,1]C.[$\frac{2}{3}$,1]D.[1,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m?α,n∥α,則m∥n;
②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若α∩β=n,m∥n,則m∥α且m∥β;
④若α⊥γ,β⊥γ,則α∥β;
其中真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知${z_1}=2t+i,{z_2}=1-2i,若\frac{z_1}{z_2}$為實(shí)數(shù),則實(shí)數(shù)t的值為(  )
A.1B.-1C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.目前很多朋友都加入了微信群,大多數(shù)群成員認(rèn)為有思想的群不僅僅是群里的人轉(zhuǎn)發(fā)與主題有關(guān)的網(wǎng)頁(yè)文章,而且群成員這間還有文字或語(yǔ)音的交流,因此規(guī)定$\frac{網(wǎng)頁(yè)類(lèi)型分享}{文字語(yǔ)音聊天}$為“群健康度”,為此群主統(tǒng)計(jì)了一年的群里的聊天記錄(假定該群由群主同意邀請(qǐng),也無(wú)插入廣告),并將聊天記錄中的網(wǎng)頁(yè)類(lèi)型分享和文字語(yǔ)音聊天內(nèi)容進(jìn)行了分類(lèi)統(tǒng)計(jì),并按照“群健康度”制作了分析趨勢(shì)圖如圖,假定“群健康度”小于20%為群氛圍優(yōu)良,“群健康度”大于30%為群氛圍不合理.
(Ⅰ)若從此群主統(tǒng)計(jì)的一年里,隨機(jī)選取一個(gè)月,求該月群氛圍不合理的概率;
(Ⅱ)現(xiàn)群主隨機(jī)選擇從1月至12月的某一個(gè)月開(kāi)始分析,連續(xù)分析兩個(gè)月,設(shè)X表示2個(gè)月中群氛圍優(yōu)良的個(gè)數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)請(qǐng)你簡(jiǎn)述該群在這一年里的群氛圍變化的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=2cos(2x+θ)sinθ-sin2(x+θ)(θ為常數(shù),且θ≠$\frac{kπ}{2}$,k∈Z)圖象的一個(gè)對(duì)稱(chēng)中心的坐標(biāo)為( 。
A.(-$\frac{π}{4}$,0)B.(0,0)C.($\frac{θ}{2}$,0)D.(θ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(4,2),$\overrightarrow$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow$,則x的值是( 。
A.-6B.6C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案