3.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1⊥底面ABC,CA=CB,D,E,F(xiàn)分別為AB,A1D,A1C的中點(diǎn),點(diǎn)G在AA1上,且A1D⊥EG.
(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.

分析 (1)利用三角形的中位線的性質(zhì),證明EF∥CD,利用線面平行的判定定理證明:CD∥平面EFG;
(2)利用等腰三角形三線合一證明CD⊥AB,利用平面與平面垂直的性質(zhì)證明CD⊥A1D,利用線面垂直的判定定理證明:A1D⊥平面EFG.

解答 證明:(1)∵E,F(xiàn)分別為A1D,A1C的中點(diǎn),
∴EF∥CD,
∵CD?平面EFG,EF?平面EFG,
∴CD∥平面EFG;
(2)∵CA=CB,D為AB的中點(diǎn),
∴CD⊥AB,
∵側(cè)面ABB1A1⊥底面ABC,側(cè)面ABB1A1∩底面ABC=AB,
∴CD⊥側(cè)面ABB1A1,
∴CD⊥A1D,
∵EF∥CD,
∴A1D⊥EF,
∵A1D⊥EG,EF∩EG=E,
∴A1D⊥平面EFG.

點(diǎn)評(píng) 本題考查線面平行,線面垂直,解題的關(guān)鍵是正確運(yùn)用線面平行、線面垂直的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四個(gè)命題一定正確的是( 。
A.算法的三種基本結(jié)構(gòu)是順序結(jié)構(gòu)、條件結(jié)構(gòu),循環(huán)結(jié)構(gòu)
B.用樣本頻率分布估計(jì)總體頻率分布的過(guò)程中,總體容量越大,估計(jì)越精確
C.一組數(shù)據(jù)的方差為3,將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都擴(kuò)大到原來(lái)的3倍,所得的新數(shù)據(jù)組的方差還是3
D.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為5,15,20,35,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(m+1,1),$\overrightarrow$=(m+2,2),若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則實(shí)數(shù)m=(  )
A.-3B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知變量x與y正相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)$\overline x$=3,$\overline y$=3.5,則由觀測(cè)數(shù)據(jù)所得線性回歸方程可能是(  )
A.$\stackrel{∧}{y}$=2x-2.1B.$\stackrel{∧}{y}$=-2x+9.5C.$\stackrel{∧}{y}$=0.3x+2.6D.$\stackrel{∧}{y}$=-0.3x+4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知拋物線C1:y2=4x的焦點(diǎn)為F,橢圓C2的中心在原點(diǎn),F(xiàn)為其右焦點(diǎn),點(diǎn)M為曲線C1和C2在第一象限的交點(diǎn),且|$\overrightarrow{MF}$|=$\frac{5}{2}$.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B為拋物線C1上的兩個(gè)動(dòng)點(diǎn),且使得線段AB的中點(diǎn)D在直線y=x上,P(3,2)為定點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.二項(xiàng)式(x+$\frac{1}{\root{3}{x}}$-4y)7展開(kāi)式中不含x的項(xiàng)的系數(shù)之和為-47-44${∁}_{7}^{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)$f(x)=Asin(2x+\frac{π}{3})\;(A>0)$的圖象為C,對(duì)于函數(shù)f(x)及其圖象C給出以下結(jié)論:
①圖象C關(guān)于直線x=$\frac{π}{12}$對(duì)稱;
②圖象C關(guān)于點(diǎn)$(\frac{2π}{3},0)$對(duì)稱;
③函數(shù)f(x)在$[-\frac{5}{12}π,\frac{π}{12}]$上是增函數(shù);
④圖象C向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,可以得到函數(shù)y=Asin2x的圖象.
其中正確結(jié)論的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)已知AP=AB=1,AD=$\sqrt{3}$,求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn),PA⊥平面ABC,E是PC的中點(diǎn),$AB=\sqrt{3}$,PA=AC=1.
(1)求證:AE⊥PB;
(2)求二面角A-PB-C的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案