【題目】已知不共線向量,滿足||=3,||=2,(23)(2)=20.
(1)求;
(2)是否存在實(shí)數(shù)λ,使λ與2共線?
(3)若(k2)⊥(),求實(shí)數(shù)k的值.
【答案】(1)1;(2)存在,;(3)或
【解析】
(1)利用向量運(yùn)算法則展開計(jì)算得到答案.
(2)假設(shè)存在實(shí)數(shù)λ,使λ與2共線,則,計(jì)算得到答案.
(3)計(jì)算(k2)()=0,展開計(jì)算得到答案.
(1)向量,滿足||=3,||=2,(23)(2)=20,
所以4434×9﹣43×4=20,解得1;
(2)假設(shè)存在實(shí)數(shù)λ,使λ與2共線,則,
故,.
即存在λ,使得λ與2共線;
(3)若(k2)⊥(),則(k2)()=0,
即k(2﹣k2)2k0,所以9k+(2﹣k2)×1﹣2k4=0,
整理得k2﹣k﹣2=0,解得k=﹣1或k=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問題統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | 5 | 0.5 | |
第2組 | 0.9 | ||
第3組 | 27 | ||
第4組 | 0.36 | ||
第5組 | 3 |
(Ⅰ) 分別求出的值;
(Ⅱ) 從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù)(),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若 為其定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于定義域內(nèi)的任意實(shí)數(shù),有成立,且時(shí),.
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)當(dāng)時(shí),求函數(shù)的最大值;
(3)已知(實(shí)數(shù)),求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一位騎自行車者和一位騎摩托車者在相距的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖,可知騎自行車者用了,沿途休息了,騎摩托車者用了,根據(jù)這個(gè)圖象,提出關(guān)于這兩個(gè)旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā),晚到;
②騎自行車者是變速運(yùn)動(dòng),騎摩托者是勻速運(yùn)動(dòng);
③騎摩托車者在出發(fā)了后,追上了騎自行車者.
其中正確信息的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意均有 求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年級(jí)組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?/span>40分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com