9.在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=$\sqrt{3}$acosB.
(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求AD的長度.

分析 (1)已知等式利用正弦定理化簡,根據(jù)sinA不為0求出tanB的值,即可確定出B的度數(shù);
(2)由a,c,D為BC的中點(diǎn),求出BD的長,在三角形ABD中,利用余弦定理即可求出AD的長.

解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
∴利用正弦定理化簡得:sinBsinA=$\sqrt{3}$sinAcosB,
∵sinA≠0,
∴sinB=$\sqrt{3}$cosB,即tanB=$\sqrt{3}$,
∵B為三角形的內(nèi)角,
∴B=60°;
(2)∵a=4,c=3,D為BC的中點(diǎn),∴BD=2,
在△ABD中,利用余弦定理得:
AD2=BD2+BA2-2BD•BA•cos60°=4+9-2×2×3×$\frac{1}{2}$=7,
則AD=7.

點(diǎn)評 本題考查了正弦、余弦定理,熟練掌握定理及公式運(yùn)用是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)不等式$\frac{4-x}{x-2}>0$的解集為集合A,關(guān)于x的不等式x2+(2a-3)x+a2-3a+2<0的解集為集合B.
(Ⅰ)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={x|2a≤x≤a+3},B=(5,+∞),若A∩B=A,則實(shí)數(shù)a的取值范圍($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,其中,四邊形ABCD為正方形,△PAD是正三角形,M是PD的中點(diǎn).
(1)求證:AM⊥平面PCD;
(2)設(shè)二面角P-BC-A的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a、b是兩條異面直線,c∥a,那么c與b的位置關(guān)系不可能是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a,b∈R+,函數(shù)f(x)=alog2x+b的圖象經(jīng)過點(diǎn)(4,1),則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.6-2$\sqrt{2}$B.6C.4+2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},}&{x≤0}\\{\sqrt{x},}&{x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-x-k有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$sin(\frac{2015π}{2}+α)=\frac{1}{3}$,則cos(π-2α)的值為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,ABCD是矩形,其中AB=2AD=4,E為DC上一點(diǎn),使得D點(diǎn)射影落在AE上.

(1)若E為CD中點(diǎn),求證:AD⊥平面BDE;
(2)設(shè)∠DAE=θ,當(dāng)DB最短時(shí),求θ的值.

查看答案和解析>>

同步練習(xí)冊答案