4.已知某幾何體的三視圖如上圖所示,則該幾何體的體積為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.3D.1

分析 根據(jù)幾何體的三視圖,得出該幾何體是三棱錐,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是三棱錐,且底面三角形的邊長(zhǎng)為3,它邊上的高為1,
三棱錐的高為3;
所以該三棱錐的體積為
V=$\frac{1}{3}$×$\frac{1}{2}$×3×1×3=$\frac{3}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了根據(jù)幾何體的三視圖求幾何體的體積的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求下列函數(shù)的導(dǎo)數(shù).
(1)y=8x4+4x3+$\frac{1}{8}$x2+6.
(2)y=x3-x2-5x;
(3)y=x3•cosx;
(4)y=$\frac{x+5}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.各棱長(zhǎng)都為2的四棱錐,底面ABCD是正方形,將側(cè)面PBC水平放置,則這個(gè)幾何體的俯視圖的面積為( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,下列四個(gè)幾何體中,它們各自的三視圖(主視圖、左視圖、俯視圖)有兩個(gè)相同,而另一個(gè)不同的幾何體是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)某市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬(wàn)人,平均每人每年創(chuàng)造產(chǎn)值a萬(wàn)元(a為正常數(shù)),現(xiàn)在決定從中分流x萬(wàn)人去加強(qiáng)第三產(chǎn)業(yè).分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100).而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬(wàn)元.
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.圖中的三個(gè)直角三角形是一個(gè)的幾何體的三視圖,高h(yuǎn)=4,則體積為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為π;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)和拋物線y2=8x的焦點(diǎn)重合,離心率等于$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)P(2,3),Q(2,-3)是橢圓上兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),若AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知0$<α<\frac{π}{2}$<β<π,且sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$.
(1)求cosα的值;
(2)求sinβ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案