分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)令$f(x)=lnx+\frac{1}{x}$,求出函數(shù)f(x)的最小值,通過討論a的范圍,得到g(x)的單調(diào)性,求出g(x)的最大值小于f(x)的最小值,從而求出a的范圍即可.
解答 解:(1)g'(x)=3ax2+2x+1
(i)當(dāng)a=0時(shí),g(x)在$({-∞,-\frac{1}{2}})$單調(diào)減和$({-\frac{1}{2},+∞})$單調(diào)增;
(ii)當(dāng)a≠0時(shí),△=4-12a,
當(dāng)$a≥\frac{1}{3}$時(shí),g'(x)=3ax2+2x+1≥0恒成立,此時(shí)g(x)在R單調(diào)增;
當(dāng)$0<a<\frac{1}{3}$時(shí),由g'(x)=3ax2+2x+1=0得,
${x_1}=\frac{{-1-\sqrt{1-3a}}}{3a},{x_2}=\frac{{-1+\sqrt{1-3a}}}{3a}$,
g(x)在(x1,x2)單調(diào)減,在(-∞,x1)和(x2,+∞)單調(diào)增;
當(dāng)a<0時(shí),g(x)在(x2,x1)單調(diào)增,在(-∞,x2)和(x1,+∞)單調(diào)減;
(2)令$f(x)=lnx+\frac{1}{x}$,則$f'(x)=\frac{1}{x}-\frac{1}{x^2}$
因此,f(x)在(0,1)單調(diào)減,在(1,+∞)單調(diào)增∴fmin(x)=f(1)=1
當(dāng)a>-1時(shí),g(1)=a+2>1=f(1),顯然,對?x∈(0,+∞)不恒有f(x)≥g(x);
當(dāng)a≤-1時(shí),由(1)知,g(x)在(0,x1)單調(diào)增,在(x1,+∞)單調(diào)減,
$3a{x_1}^2+2{x_1}+1=0$,即$a{x_1}^2=-\frac{1}{3}({2{x_1}+1})$
所以,在(0,+∞)上,${g_{max}}(x)=g({x_1})=ax_1^3+x_1^2+{x_1}=\frac{1}{3}x_1^2+\frac{2}{3}{x_1}=\frac{1}{3}{({{x_1}+1})^2}-\frac{1}{3}$,
又${x_1}=\frac{{-1-\sqrt{1-3a}}}{3a}=\frac{1}{{\sqrt{1-3a}-1}}∈({0,1}]$
所以${g_{max}}(x)=\frac{1}{3}{({{x_1}+1})^2}-\frac{1}{3}≤1={f_{min}}(x)$,
即滿足對?x∈(0,+∞)恒有f(x)≥g(x)
綜上,實(shí)數(shù)a∈(-∞,-1].
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{e}$,2] | B. | [$\frac{5}{2e}$,2) | C. | (-$\frac{1}{2}$,-$\frac{5}{2e}$] | D. | [-2,-$\frac{5}{2e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AE=AD | B. | ∠AEB=∠ADC | C. | CE=BD | D. | AB=AC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com