16.設(shè)函數(shù)f(x)=|2x-1|,x∈R.
(1)求不等式|f(x)-2|≤7的解集;
(2)若g(x)=$\frac{1}{f(x)+f(x+1)+m}$的定義域為R,求實數(shù)m的取值范圍.

分析 (1)由不等式|f(x)-2|≤7,可得-5≤2x+1≤9,由此求得它的解集;
(2)由題意可得|2x+1|+|2x-1|+m≠0 恒成立.利用絕對值三角不等式可得|2x+1|+|2x-1|≥2,可得m的范圍.

解答 解:(1)由不等式|f(x)-2|≤7,
可得-7≤f(x)-2≤7,-5≤f(x)≤9,
即|2x-1|≤9,即-4≤x≤5,
故不等式|f(x)-2|≤7的解集為[-4,5].
(2)g(x)=$\frac{1}{f(x)+f(x+1)+m}$=$\frac{1}{|2x-1|+|2x+1|+m}$的定義域為R,
可得|2x-1|+|2x+1|+m≠0恒成立.
∵|2x-1|+|2x+1|≥|(2x-1)-(2x+1)|=2,
∴m>-2.

點評 本題主要考查絕對值不等式的解法,絕對值三角不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)向量$\vec a$與$\vec b$滿足:$\vec b$在$\vec a$方向上的投影為1,$\vec a$與$\vec a-2\vec b$垂直,則$|{\vec a}|$=( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l:x+y=2與圓C:x2+y2-2y=3交于A,B兩點,則|AB|=( 。
A.$\sqrt{14}$B.2$\sqrt{7}$C.$\sqrt{7}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若曲線f(x)=xcosx在x=π處的切線與直線ax+2y-3=0互相垂直,則實數(shù)a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知程序框圖如圖,則輸出的i=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是一個算法的流程圖,則當(dāng)輸入的值為5時,輸出的值是52.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了100名中學(xué)生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖:

已知[350,450),[450,550),[550,650)三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群”.
(Ⅰ)求m,n的值,并求這100名學(xué)生月消費金額的樣本平均數(shù)$\overline x$(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)現(xiàn)采用分層抽樣的方式從月消費金額落在[350,450),[550,650)內(nèi)的兩組學(xué)生中抽取10人,再從這10人中隨機抽取3人,記被抽取的3名學(xué)生中屬于“高消費群”的學(xué)生人數(shù)為隨機變量X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{2,x=0}\\{{log}_{3}|x|,x≠0}\end{array}\right.$ 若關(guān)于x的方程f2(x)+bf(x)+c=0恰好有3個不同的實數(shù)解,則bc=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在同一平面直角坐標系中,經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$ 后,曲線C:x2+y2=36變?yōu)楹畏N曲線,其曲線方程是什么?

查看答案和解析>>

同步練習(xí)冊答案