分析 (1)由不等式|f(x)-2|≤7,可得-5≤2x+1≤9,由此求得它的解集;
(2)由題意可得|2x+1|+|2x-1|+m≠0 恒成立.利用絕對值三角不等式可得|2x+1|+|2x-1|≥2,可得m的范圍.
解答 解:(1)由不等式|f(x)-2|≤7,
可得-7≤f(x)-2≤7,-5≤f(x)≤9,
即|2x-1|≤9,即-4≤x≤5,
故不等式|f(x)-2|≤7的解集為[-4,5].
(2)g(x)=$\frac{1}{f(x)+f(x+1)+m}$=$\frac{1}{|2x-1|+|2x+1|+m}$的定義域為R,
可得|2x-1|+|2x+1|+m≠0恒成立.
∵|2x-1|+|2x+1|≥|(2x-1)-(2x+1)|=2,
∴m>-2.
點評 本題主要考查絕對值不等式的解法,絕對值三角不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | 2$\sqrt{7}$ | C. | $\sqrt{7}$ | D. | $\frac{\sqrt{14}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com