18.已知f(x)=2x,若$p=f({\sqrt{ab}})$,$q=f({\frac{a+b}{2}})$,$r=\frac{1}{2}({f(a)+f(b)})$,其中,a>b>0,則下列關(guān)系中正確的是( 。
A.p<r<qB.q<p<rC.r<p<qD.p<q<r

分析 由題意可得p=${2}^{\sqrt{ab}}$,q=${2}^{\frac{a+b}{2}}$>${2}^{\sqrt{ab}}$=p,r=$\frac{1}{2}$(2a+2b)>${2}^{\sqrt{ab}}$,可得大小關(guān)系.

解答 解:∵f(x)=2x,a>b>0,
∴p=${2}^{\sqrt{ab}}$,
q=${2}^{\frac{a+b}{2}}$>${2}^{\sqrt{ab}}$=p,
r=$\frac{1}{2}$(2a+2b)${2}^{\frac{a+b}{2}}$>${2}^{\sqrt{ab}}$,
∴p<q<r,
故選:D.

點(diǎn)評(píng) 本題考查不等式與不等關(guān)系,涉及基本不等式和對(duì)數(shù)的運(yùn)算,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,0),B(7,0),C(1,2),D為BC的中點(diǎn).
(Ⅰ)求AD所在直線的方程;
(Ⅱ)求△ACD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點(diǎn)M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,N為BC中點(diǎn),則$\overrightarrow{MN}$=( 。
A.-$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知0<θ<π,tan(θ+$\frac{π}{4}$)=$\frac{1}{7}$,那么sinθ+cosθ=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m=({cosA,sinB}),\overrightarrow n=({cosB,-sinA})$,$\overrightarrow m•\overrightarrow n=-cos2C$,且A,B,C分別為△ABC的三邊a,b,c所對(duì)的角.
(I)求角C的大。
(Ⅱ)若a+b=2c,且△ABC的面積為$15\sqrt{3}$,求c邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓錐的母線長(zhǎng)是10,側(cè)面展開圖是半圓,則該圓錐的側(cè)面積為( 。
A.$\frac{100}{3}$πB.100πC.$\frac{50}{3}$πD.50π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線2x+3y+6=0與坐標(biāo)軸所圍成的三角形的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知[t]表示不超過t的最大整數(shù),例如[1.25]=1,[2]=2,若關(guān)于x的方程$\frac{[x]}{x-1}$=a在(1,+∞)恰有2個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.($\frac{3}{2}$,2]D.[$\frac{3}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知一個(gè)樣本x,1,y,5的平均數(shù)為2,方差為5,則xy=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案