分析 (1)由條件利用兩角和差的三角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性求得f(x)的最小正周期.
(2)由f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,求得cosA的值,可得sinA的值,再利用正弦定理求得sinB的值.
解答 解:(1)函數(shù)f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
故f(x)的最小正周期為T=$\frac{2π}{2}$=π.
(2)由f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,得sin(A+$\frac{π}{2}$)=$\frac{1}{3}$,則 cosA=$\frac{1}{3}$,
在△ABC中,sinA=$\sqrt{{1-cos}^{2}A}$=$\frac{2\sqrt{2}}{3}$.
又因為a=$\sqrt{2}$,b=1,由正弦定理可得sinB=$\frac{a}$sinA=$\frac{2}{3}$.
點評 本題主要考查兩角和差的三角公式,正弦函數(shù)的周期性,同角三角函數(shù)的基本關(guān)系,正弦定理的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3? | B. | 1 | C. | $-\frac{21}{4}$? | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 兩條直線平行,同旁內(nèi)角互補,如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180° | |
B. | 由平面三角形的性質(zhì),推測空間四面體的性質(zhì) | |
C. | 某校高三共有10個班,1班有51人,2班有53人,三班有52人,由此推測各班都超過50人 | |
D. | 在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n≥2),計算a2、a3,a4,由此猜測通項an |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A中不同元素的像必不同 | |
B. | A中每一個元素在B中必有像 | |
C. | B中每一個元素在A中必有原像 | |
D. | B中每一個元素在A中必有唯一的原像 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com