2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的半焦距為c,過右焦點且斜率為1的直線與雙曲線的右支交于兩點,若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的弦長是$\frac{2\sqrt{2}}{3}$be2(e為雙曲線的離心率),則e的值為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{3}$C.$\frac{2}{3}$或3D.$\frac{\sqrt{6}}{2}$或$\sqrt{3}$

分析 拋物線y2=4cx的準(zhǔn)線:x=-c,它正好經(jīng)過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點,準(zhǔn)線被雙曲線C截得的弦長為:$\frac{2^{2}}{a}$,可得$\frac{2^{2}}{a}$=$\frac{2\sqrt{2}}{3}$be2,得出a和c的關(guān)系,從而求出離心率的值.

解答 解:∵拋物線y2=4cx的準(zhǔn)線:x=-c,它正好經(jīng)過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點,
∴準(zhǔn)線被雙曲線C截得的弦長為:$\frac{2^{2}}{a}$,
∴$\frac{2^{2}}{a}$=$\frac{2\sqrt{2}}{3}$be2
即:$\sqrt{2}$c2=3ab,
∴2c4=9a2(c2-a2),
∴2e4-9e2+9=0
∴e=$\frac{\sqrt{6}}{2}$或$\sqrt{3}$,
又過焦點且斜率為1的直線與雙曲線的右支交于兩點,
∴e=$\frac{\sqrt{6}}{2}$.
故選:A.

點評 本題考查直線方程、橢圓的方程、直線和橢圓的位置關(guān)系.由圓錐曲線的方程求焦點、離心率、雙曲線的三參數(shù)的關(guān)系:c2=a2+b2注意雙曲線與橢圓的區(qū)別.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$+1-2a(a>0),若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一機器元件的三視圖及尺寸如圖所示(單位:dm),則該組合體的體積為( 。
A.80dm3B.88dm3C.96dm3D.112dm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸,建立的極坐標(biāo)系中,曲線C2的方程為ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)其C1和C2公共弦的垂直平分線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若點P(x,y)在曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù),θ∈R),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若射線θ=$\frac{π}{4}$(ρ≥0)與曲線C相交于A、B兩點,求|OA|+|OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=3$\sqrt{2}$,AA1=2,點P、Q分別為A1B和B1C1的中點.
(Ⅰ)證明:PQ∥平面A1ACC1;
(Ⅱ)求三棱錐Q-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)在△ABC中,內(nèi)角A,B,C所對邊的邊長分別為a,b,c,且c=2$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四棱錐P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)在側(cè)棱PC上是否存在一點Q,使BQ∥平面PAD?證明你的結(jié)論;
(2)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足${a_1}=\frac{1}{4}$,${a_{n+1}}=\frac{1}{{4({1-{a_n}})}}$.
(1)設(shè)${b_n}=\frac{2}{{2{a_n}-1}}$,求證:數(shù)列{bn}為等差數(shù)列;
(2)求證:$\frac{a_2}{a_1}+\frac{a_3}{a_2}+…+\frac{{{a_{n+1}}}}{a_n}<n+\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案