9.如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=$\frac{\sqrt{3}}{3}$.
(I)求△ACD的面積;
(Ⅱ)若BC=2$\sqrt{3}$,求AB的長(zhǎng).

分析 (1)利用已知條件求出D角的正弦函數(shù)值,然后求△ACD的面積;
(2)利用余弦定理求出AC,通過BC=2$\sqrt{3}$,利用正弦定理求解AB的長(zhǎng).

解答 解:(Ⅰ)cosD=cos2B=2cos2B-1=-$\frac{1}{3}$,…(2分)
因?yàn)椤螪∈(0,π),所以sinD=$\frac{2\sqrt{2}}{3}$,…(4分)
所以△ACD的面積S=$\frac{1}{2}AD•CD•sinD$=$\frac{1}{2}×1×3×\frac{2\sqrt{2}}{3}$=$\sqrt{2}$.…(7分)
(Ⅱ)在△ACD中,AC2=AD2+DC2-2AD•DC•cosD=12,
所以AC=2$\sqrt{3}$.…(9分)
在△ABC中,BC=2$\sqrt{3}$,$\frac{AC}{sinB}=\frac{AB}{sin∠ACB}$,…(12分)
把已知條件代入并化簡(jiǎn)得:$\frac{2\sqrt{3}}{sinB}=\frac{AB}{sin(π-2B)}=\frac{AB}{\frac{2\sqrt{3}}{3}sinB}$,
所以AB=4.…(15分)

點(diǎn)評(píng) 本題考查余弦定理以及正弦定理的應(yīng)用,基本知識(shí)的考查,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上的最小值為-38,則f(x)在[-2,2]上的最大值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2-4ax+b(a>0)在區(qū)間[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在$f(x)={(\frac{1}{x}+{x^2})^n}$的展開式中,第4項(xiàng)為常數(shù)項(xiàng)
(1)求f(x)的展開式中含x-3的項(xiàng)的系數(shù);
(2)求f(x)的展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.曲線y=Asin2ωx+k(A>0,k>0)在區(qū)間$[0\;,\;\frac{π}{ω}]$上截直線y=4與y=-2所得的弦長(zhǎng)相等且不為0,則A+k的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=sin(ωx+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),若$cos∠APB=-\frac{{\sqrt{5}}}{5}$,則ω的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,c=5且b(2sinB+sinA)+(2a+b)sinA=2csinC.
(1)求C的值;
(2)若cosA=$\frac{4}{5}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l的方程為$|\begin{array}{l}{1}&{0}&{2}\\{x}&{2}&{3}\\{y}&{-1}&{2}\end{array}|$=0,則直線l的傾斜角為π-arctan$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)數(shù)列{an}滿足:an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,a2015=3,那么a1等于( 。
A.$\frac{1}{2}$B.2C.-$\frac{1}{3}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案