2.函數(shù)f(x)=$\frac{\sqrt{1-x}}{ln(x+1)}$的定義域為(  )
A.(-1,1]B.(-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

分析 由根式內(nèi)部的代數(shù)式大于等于0,對數(shù)式的真數(shù)大于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{1-x≥0}\\{x+1>0}\\{x+1≠1}\end{array}\right.$,解得:-1<x≤1,且x≠0.
∴函數(shù)f(x)=$\frac{\sqrt{1-x}}{ln(x+1)}$的定義域為(-1,0)∪(0,1].
故選:B.

點評 本題考查函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{2}-3x,x≤0}\\{{e}^{x}+{e}^{2},x>0}\end{array}\right.$,若不等式f(x)≥kx,對x∈R恒成立,則實數(shù)k的取值范圍是-3≤k≤e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a為實數(shù)且$\frac{2-ai}{i}$=-2-2i,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,若a2-b2=$\sqrt{3}$bc,且$\frac{sin(A+B)}{sinB}$=2$\sqrt{3}$,則角A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前項和為Sn,且{$\frac{{S}_{n}}{n}$}是等差數(shù)列,已知a1=1,$\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+$\frac{{S}_{4}}{4}$=6,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{{a}_{n+1}}{{a}_{n+2}}$+$\frac{{a}_{n+2}}{{a}_{n+1}}$,數(shù)列{bn}的前項和為Tn,求證:Tn<2n+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某同學(xué)研究相關(guān)資料,得到兩種求sin18°的方法,兩種方法的思路如下:
思路一:作頂角A為36°的等腰三角形ABC,底角B的平分線交腰AC于D;
思路二:由二倍角公式cos2α=2cos2α-1,可知cos2α可表示為cosα的二次多項式,推測cos3α也可以用cosα的三次多項式表示,再結(jié)合cos54°=sin36°.
請你按某一種思路:計算得sin18°的精確值為$\frac{\sqrt{5}-1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x+5|>x+5的解集為(-∞,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某幾何體的三視圖所示.
(Ⅰ)求此幾何體的表面積;
(Ⅱ)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,且a1=3,a2+a3=36.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}對任意的正整數(shù)n都有$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n}}{{a}_{n}}$=2n+1,求b1+b2+b3+…+b2015的值.

查看答案和解析>>

同步練習(xí)冊答案