7.某同學(xué)研究相關(guān)資料,得到兩種求sin18°的方法,兩種方法的思路如下:
思路一:作頂角A為36°的等腰三角形ABC,底角B的平分線交腰AC于D;
思路二:由二倍角公式cos2α=2cos2α-1,可知cos2α可表示為cosα的二次多項(xiàng)式,推測cos3α也可以用cosα的三次多項(xiàng)式表示,再結(jié)合cos54°=sin36°.
請(qǐng)你按某一種思路:計(jì)算得sin18°的精確值為$\frac{\sqrt{5}-1}{4}$.

分析 設(shè)α=18°,則cos3α=sin2α,利用三倍角的余弦公式、二倍角的正弦公式展開化簡可得sinα的值.

解答 解:設(shè)α=18°,則5α=90°,從而3α=90°-2α,
于是cos3α=cos(90°-2α),
即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∵cosα=cos18°≠0,
∴4cos2α-3=2sinα,化簡得4sin2α+2sinα-1=0,解得sinα=$\frac{-1+\sqrt{5}}{4}$,或sinα=$\frac{-1-\sqrt{5}}{4}$(舍去),
故答案為:$\frac{\sqrt{5}-1}{4}$.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、三倍角的余弦公式、二倍角的正弦公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.平面直角坐標(biāo)系xOy中,過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)右焦點(diǎn)的直線l:y=kx-k交C于A,B兩點(diǎn),P為AB的中點(diǎn),當(dāng)k=1時(shí)OP的斜率為$-\frac{1}{2}$.
(Ⅰ) 求C的方程;
(Ⅱ) x軸上是否存在點(diǎn)Q,使得k變化時(shí)總有∠AQO=∠BQO,若存在請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x>0,y>0,x+2y=1,則$\frac{y}{x}+\frac{1}{y}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|x-2|<1},N={x|y=$\sqrt{4{-2}^{x}}$},則M∩N( 。
A.(1,2)B.(1,2]C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{\sqrt{1-x}}{ln(x+1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,1]B.(-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C上任一點(diǎn)到點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為10.曲線C的左頂點(diǎn)為A,點(diǎn)P在曲線C上,且PA⊥PF2
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)在y軸上求一點(diǎn)M,使M到曲線C上點(diǎn)的距離最大值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)直線nx+(n+1)y=$\sqrt{2}$(n∈N*)與兩坐標(biāo)軸圍城的三角形的面積為Sn,則S1+S2+S3+…+S2016的值為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且$α∈[{\frac{π}{12},\frac{π}{4}}]$,則橢圓離心率的范圍是$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實(shí)數(shù)x,y滿足:x2+y2-2x-2y=0,則x+y的取值范圍是( 。
A.[-4,0]B.[2-2$\sqrt{2}$,2+2$\sqrt{2}$]C.[0,4]D.[-2-2$\sqrt{2}$,-2+2$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案