11.(1)設P(-3t,-4t)是角α終邊上不同與原點O的一點,求sinα+cosα的值.
(2)若tanα=2,求sin2α+sinαcosα-2cos2α的值.

分析 (1)由角α終邊上一點P的坐標,利用任意角的三角函數(shù)定義求出sinα,cosα即可求解結果;
(2)原式分母看做“1”,利用同角三角函數(shù)間基本關系化簡,將tanα的值代入計算即可求出值.

解答 解:(1)∵角α終邊上一點P(-3t,-4t),
當t<0時,sinα>0,cosα>0,
∴sinα=$\frac{-4t}{\sqrt{9{t}^{2}+16{t}^{2}}}$=$\frac{-4t}{5|t|}$=$\frac{4}{5}$,cosα=$\frac{-3t}{5|t|}$=$\frac{3}{5}$,
∴sinα+cosα=$\frac{4}{5}+\frac{3}{5}$=$\frac{7}{5}$;
當t>0時,sinα<0,cosα<0,
∴sinα=$\frac{-4t}{\sqrt{9{t}^{2}+16{t}^{2}}}$=$\frac{-4t}{5|t|}$=-$\frac{4}{5}$,cosα=$\frac{-3t}{5|t|}$=-$\frac{3}{5}$,
∴sinα+cosα=-$\frac{4}{5}-\frac{3}{5}$=-$\frac{7}{5}$.
(2)∵tanα=2,
∴原式=$\frac{si{n}^{2}α+sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+tanα-2}{ta{n}^{2}α+1}$=$\frac{4+2-2}{4+1}$=$\frac{4}{5}$.

點評 此題主要考查了三角函數(shù)的定義,同角三角函數(shù)基本關系的運用,注意分類討論思想的應用,屬于基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,在正方形紙片ABCD中,AC與BD相交于點O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則在以A(B)、C、D、O為頂點的四面體中,二面角O-AD-C的余弦值為( 。
A.$\frac{\sqrt{6}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,一$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則(  )
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個單位長度得到
C.函數(shù)f(x)的圖象關于直線x=一$\frac{π}{12}$對稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個圓錐的軸截面為正三角形,其邊長為a,則其表面積為( 。
A.$\frac{5}{4}{a^2}$πB.a2πC.$\frac{3}{4}{a^2}$πD.$\frac{1}{4}{a^2}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.閱讀如圖所示的程序框圖,輸出的結果為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.滿足2n-1<(n+1)2的最大正整數(shù)n的取值是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=1+a•\frac{1}{2^x}+\frac{1}{4^x}$.
(1)當a=1時,求函數(shù)f(x)在(-∞,0)上的值域;
(2)若對任意x∈[0,+∞),總有f(x)<3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知“x>k”是“$\frac{3}{x+1}<1$”的充分不必要條件,則k的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{{x}^{2}}{3}$-y2=1的離心率互為倒數(shù),且直線x-y-2=0經(jīng)過橢圓的右頂點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設不過原點O的直線與橢圓C交于M、N兩點,且直線OM、MN、ON的斜率依次成等比數(shù)列,求△OMN面積的取值范圍.

查看答案和解析>>

同步練習冊答案