20.用平面區(qū)域表示不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-1≥0}\\{x≤1}\end{array}\right.$的解集.

分析 利用二元一次不等式組表示平面區(qū)域,進(jìn)行作圖即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
則不等式組的解集為平面區(qū)域△ABC.

點(diǎn)評 本題主要考查二元一次不等式組表示平面區(qū)域,利用作圖法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題P的逆命題是“若a、b都不是偶數(shù),則ab不是偶數(shù)”,則命題P的逆否命題是( 。
A.若a、b都是偶數(shù),則ab是偶數(shù)
B.若ab是偶數(shù),則a、b都是偶數(shù)
C.若a、b至少有一個是偶數(shù),則ab是偶數(shù)
D.若ab是偶數(shù),則a、b至少有一個是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在實(shí)數(shù)范圍內(nèi)分解因式x2-6x+8=(x-2)(x-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知三棱錐V-ABC的底面ABC是邊長為4的正三角形,側(cè)棱長都相等,其外接球(三棱錐的每個頂點(diǎn)都在球面上)的球心為O,滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{VO}$,則球O的體積為8$\sqrt{6}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=x2+ax+3在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由直線x+y+2=0,x+2y+1=0,2x+y+1=0圍成的三角形區(qū)域(包括邊界)用不等式(組)可表示為$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{2x+y+1≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過雙曲線一焦點(diǎn)且垂直于雙曲線實(shí)軸的直線交雙曲線于A、B兩點(diǎn),若以AB為直徑的圓恰過雙曲線的一個頂點(diǎn),則雙曲線的離心率是( 。
A.$\frac{3}{2}$B.3C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=cos2x-cos4x的最大值和最小正周期分別為(  )
A.$\frac{1}{4}$,πB.$\frac{1}{4}$,$\frac{π}{2}$C.$\frac{1}{2}$,πD.$\frac{1}{2}$,$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩人自相距27千米處相向出發(fā),甲勻速行進(jìn),每小時4千米,乙第一小時走2千米,以后每小時多走0.5千米,問幾小時甲、乙相遇?

查看答案和解析>>

同步練習(xí)冊答案