分析 (Ⅰ)由已知及降冪公式可得$a(1+cosC)+c(1+cosA)=\frac{5}{2}b$,由acosC+ccosA=b,可得$a+c=\frac{3}{2}b$,即可得解.
(Ⅱ)利用同角三角函數(shù)基本關(guān)系式可求$sinB=\frac{{\sqrt{15}}}{4}$,利用三角形面積公式可求ac=8,利用余弦定理可得b2=(a+c)2-2ac(1+cosB),代入(Ⅰ)的結(jié)論2(a+c)=3b,即可解得b的值.
解答 (本小題滿分12分)
解:(Ⅰ)由條件:$a(1+cosC)+c(1+cosA)=\frac{5}{2}b$,
由于:acosC+ccosA=b,所以:$a+c=\frac{3}{2}b$,
即:2(a+c)=3b….(5分)
(Ⅱ)∵$cosB=\frac{1}{4}$,∴$sinB=\frac{{\sqrt{15}}}{4}$,….(6分)
∵$S=\frac{1}{2}acsinB=\frac{1}{8}\sqrt{15}ac=\sqrt{15}$,∴ac=8….(8分)
又∵b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB),
由2(a+c)=3b,
∴$\frac{{5{b^2}}}{4}=16(1+\frac{1}{4})$,
∴b=4….(12分)
點(diǎn)評 本題主要考查了降冪公式,同角三角函數(shù)基本關(guān)系式,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2<b2 | B. | a3<b3 | C. | $\frac{1}{a}$>$\frac{1}$ | D. | ac2<bc2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {1,2,3} | C. | {0,1,3,4} | D. | {0,1,2,3,4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com