19.點(diǎn)A(-2,1)到直線y=2x-5的距離是( 。
A.2B.$\frac{10\sqrt{3}}{3}$C.$\frac{8\sqrt{5}}{5}$D.2$\sqrt{5}$

分析 根據(jù)題意,將直線y=2x-5可以變形為2x-y-5=0,由點(diǎn)到直線的距離公式計(jì)算可得答案.

解答 解:根據(jù)題意,直線y=2x-5可以變形為2x-y-5=0,
點(diǎn)A(-2,1)到直線2x-y-5=0的距離d=$\frac{|2×(-2)-1-5|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\frac{10}{\sqrt{5}}$=2$\sqrt{5}$,
故選:D.

點(diǎn)評 本題考查點(diǎn)到直線距離的計(jì)算,關(guān)鍵是掌握計(jì)算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a2+b2-c2=ab,則cosC=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sin(α+β)=$\frac{33}{65}$,cosβ=-$\frac{5}{13}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)S為復(fù)數(shù)集C的非空子集.如果
(1)S含有一個(gè)不等于0的數(shù);
(2)?a,b∈S,a+b,a-b,ab∈S;
(3)?a,b∈S,且b≠0,$\frac{a}$∈S,那么就稱S是一個(gè)數(shù)域.
現(xiàn)有如下命題:
①如果S是一個(gè)數(shù)域,則0,1∈S;
②如果S是一個(gè)數(shù)域,那么S含有無限多個(gè)數(shù);
③復(fù)數(shù)集是數(shù)域;
④S={a+b$\sqrt{2}$|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有①②③④(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在空間四邊形ABCD中,E是線段AB的中點(diǎn).
(1)若CF=2FD,連接EF,CE,AF,BF化簡下列各式,并在圖中標(biāo)出化簡得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F為CD的中點(diǎn),求證:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過點(diǎn)(1,3)且與原點(diǎn)距離是1的直線方程是x=1或4x-3y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)以極坐標(biāo)系Ox為極點(diǎn)O為原點(diǎn),極軸Ox為x軸正半軸建立平面直角坐標(biāo)系xOy,并在兩種坐標(biāo)系中取相同的長度單位,把極坐標(biāo)方程cosθ+ρ2sinθ=1化成直角坐標(biāo)方程.
(2)在直角坐標(biāo)系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),過點(diǎn)P(2,1)的直線與曲線C交于A,B兩點(diǎn).若|PA|•|PB|=$\frac{8}{3}$,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平行六面體(底面是平行四邊形的四棱柱)ABCD-A′B′C′D′中,分別標(biāo)出$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$,$\overrightarrow{AB}$+$\overrightarrow{AA′}$+$\overrightarrow{AD}$表示的向量.從中你能體會(huì)向量加法運(yùn)算的交換律及結(jié)合律嗎?一般地,三個(gè)不共面的向量的和與這三個(gè)向量有什么關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).
(1)求圓C的普通方程;
(2)在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案