18.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的值域.

分析 (1)直接利用周期公式求得周期;
(2)由x的范圍求出相位的范圍,進一步求得函數(shù)的值域.

解答 解:(1)函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$的最小正周期為T=$\frac{2π}{2}=π$;
(2)由$0≤x≤\frac{2π}{3}$,得$0≤2x≤\frac{4π}{3}$,
∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{7π}{6}$,
則sin(2x-$\frac{π}{6}$)∈[$-\frac{1}{2}$,1],
∴f(x)∈[0,$\frac{3}{2}$].

點評 本題考查三角函數(shù)的周期性,考查了三角函數(shù)值域的求法,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點M在雙曲線上,且$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{\sqrt{5}-1}{\sqrt{5}+3}$.則雙曲線C離心率的最大值為(  )
A.$\sqrt{5}$+2B.$\frac{\sqrt{5}+2}{2}$C.$\sqrt{5}$-1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等差數(shù)列{an}中,a4,a2016是函數(shù)f(x)=x3-6x2+4x-1的極值點,則log${\;}_{\frac{1}{4}}$a2010=(  )
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(1)求函數(shù)y=f(-3x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知銳角△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=7,sinB+sinC=$\frac{13}{7}$sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點E在棱PD上,且AE⊥PD
(1)求證:AB⊥平面PAD;
(2)求證:平面ABE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)中,y的最小值是4的是( 。
A.y=2x$+\frac{2}{x}$B.y=2x+4•2-x
C.y=$\frac{2({x}^{2}+5)}{\sqrt{{x}^{2}+4}}$D.y=$\frac{4}{sinx}+sinx(0<x<4)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+3cos2x-$\frac{3}{2}$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對的邊分別是a、b、c,且b+c=$\sqrt{3}$+1,a=1.若f(A)=$\frac{3}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.命題?x∈R,cosx≤1的真假判斷及其否定是(  )
A.真,?x0∈R,cosx0>1B.真,?x∈R,cosx>1
C.假,?x0∈R,cosx0>1D.假,?x∈R,cosx>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,已知△ABC是邊長為2的正三角形,O是它的中心,過點O作BC平行的平面α,分別交AB,AC于點D,E,則四邊形BCED的面積是( 。
A.$\frac{5\sqrt{3}}{9}$B.$\frac{4\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習冊答案