科目: 來源: 題型:解答題
如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P為“C1—C2型點”.
(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線與有公共點,求證,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線y=x-6x+1與坐標(biāo)軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側(cè)的點(點在軸上方),且四邊形面積的最大值為4.
(1)求橢圓方程;
(2)設(shè)直線的斜率分別為,若,設(shè)△與△的面積分別為,求的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線C:與橢圓共焦點,
(Ⅰ)求的值和拋物線C的準線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點,直線是拋物線C在點P處的切線,問是否存在平行于的直線與拋物線C交于不同的兩點A,B,且使?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時,求曲線Cl與C2公共點的直角坐標(biāo);
(2)若,當(dāng)變化時,設(shè)曲線C1與C2的公共點為A,B,試求AB中點M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。
(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標(biāo)為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,點是橢圓()的左焦點,點,分別是橢圓的左頂點和上頂點,橢圓的離心率為,點在軸上,且,過點作斜率為的直線與由三點,,確定的圓相交于,兩點,滿足.
(1)若的面積為,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目: 來源: 題型:解答題
若橢圓C:的離心率e為, 且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1) 求橢圓C的方程;
(2) 設(shè)點M(2,0), 點Q是橢圓上一點, 當(dāng)|MQ|最小時, 試求點Q的坐標(biāo);
(3) 設(shè)P(m,0)為橢圓C長軸(含端點)上的一個動點, 過P點斜率為k的直線l交橢圓與
A,B兩點, 若|PA|2+|PB|2的值僅依賴于k而與m無關(guān), 求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com