相關(guān)習(xí)題
 0  212696  212704  212710  212714  212720  212722  212726  212732  212734  212740  212746  212750  212752  212756  212762  212764  212770  212774  212776  212780  212782  212786  212788  212790  212791  212792  212794  212795  212796  212798  212800  212804  212806  212810  212812  212816  212822  212824  212830  212834  212836  212840  212846  212852  212854  212860  212864  212866  212872  212876  212882  212890  266669 

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(1,e)和(e,
3
2
),其中e為橢圓的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點,取點A(0,
2
),E(x0,0)
,連接AE,過點A作AE的垂線交x軸于點D.點G是點D關(guān)于原點的對稱點,證明:直線QG與橢圓C只有一個公共點.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(0,1),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線l與x軸正半軸和y軸分別交于點Q、P,與橢圓分別交于點M、N,各點均不重合且滿足
PM
=λ1
MQ
PN
=λ2
NQ

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若λ12=-3,試證明:直線l過定點并求此定點.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,過橢圓G右焦點F的直線m:x=1與橢圓G交于點M(點M在第一象限).
(Ⅰ)求橢圓G的方程;
(Ⅱ)已知A為橢圓G的左頂點,平行于AM的直線l與橢圓相交于B,C兩點.判斷直線MB,MC是否關(guān)于直線m對稱,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示. 
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否與年齡有關(guān)?說明你的理由.(下面的臨界值表供參考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段選取6名選手,并抽取3名幸運獎項,求至少有一人年齡在20~30歲之間的概率.(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:

如圖,P是等邊△ABC外接圓
BC
上任一點,求證:PA2=AC2+PB•PC.

查看答案和解析>>

科目: 來源: 題型:

某單位招聘職工,經(jīng)過幾輪篩選,一輪從2000名報名者中篩選300名進(jìn)入二輪筆試,接著按筆試成績擇優(yōu)取100名進(jìn)入第三輪面試,最后從面試對象中綜合考察聘用50名.
(Ⅰ)求參加筆試的競聘者能被聘用的概率;
(Ⅱ)用分層抽樣的方式從最終聘用者中抽取10名進(jìn)行進(jìn)行調(diào)查問卷,其中有3名女職工,求被聘用的女職工的人數(shù);
(Ⅲ)單位從聘用的三男和二女中,選派兩人參加某項培訓(xùn),至少選派一名女同志參加的概率是多少?

查看答案和解析>>

科目: 來源: 題型:

如圖,已知P是矩形ABCD內(nèi)任意一點,延長BP交AD于E,延長DP交AB于F,延長CP交矩形的外接圓于G.求證:GE⊥GF.

查看答案和解析>>

科目: 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點,且△MNF2的周長為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)AB是過橢圓E中心的任意弦,P是線段AB的垂直平分線與橢圓E的一個交點,求△APB面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,右焦點為(
3
,0)

(Ⅰ)求橢圓方程;
(Ⅱ)過橢圓右焦點且斜率為k的直線與橢圓交于點A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求斜率k的值.

查看答案和解析>>

科目: 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a≠0),且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實數(shù)x稱為函數(shù)f(x)的“不動點”,若函數(shù)f(x)有且僅有一個不動點.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+kx2在(0,4)上是增函數(shù),求實數(shù)k的取值范圍;
(3)是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[3m,3n]?若存在,請求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案