相關(guān)習題
 0  224931  224939  224945  224949  224955  224957  224961  224967  224969  224975  224981  224985  224987  224991  224997  224999  225005  225009  225011  225015  225017  225021  225023  225025  225026  225027  225029  225030  225031  225033  225035  225039  225041  225045  225047  225051  225057  225059  225065  225069  225071  225075  225081  225087  225089  225095  225099  225101  225107  225111  225117  225125  266669 

科目: 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),數(shù)列{an}滿足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,設(shè)Sn=$\frac{1}{a_1a_2}$+$\frac{1}{a_2a_3}$+$\frac{1}{a_3a_4}$+…+$\frac{1}{a_na_{n+1}}$,若Sn≥3t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

2.甲乙兩人獨立地對同一目標各射擊一次,命中率分別為0.6和0.5,現(xiàn)已知目標被擊中,則它是被甲擊中的概率為0.75.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點是圓x2+y2-10x+24=0的圓心,且虛軸長為6,則雙曲線的離心率為( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知平面α、β,且α∩β=AB,PC⊥α,PD⊥β,C、D為垂足,PD=3,PC=4,∠CPD=60°,則P點到直線AB的距離是$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,在長方體ABCD-A1B1C1D1中,已知AB=BC=2,BB1=3,連結(jié)BC1,過B1作B1E⊥BC1交CC1于點E.
(1)求證:AC1⊥平面B1D1E;
(2)求三棱錐C1-B1D1E的體積;
(3)求C1到面B1D1E的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)h(x)=x-(a+1)lnx-$\frac{a}{x}$,求函數(shù)h(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

17.(文)對任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),在實數(shù)軸R(箭頭向右)上[x]是在點x左側(cè)的第一個整數(shù)點,當x是整數(shù)時[x]就是x.這個函數(shù)[x]叫做“取整函數(shù)”,它在生產(chǎn)實踐中有廣泛的應用.那么[log21]+[log22]+[log23]+[log24]+…+[log2512]=3595.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$則f(2)=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M是AB的中點,沿直線CM將CBM折起,若AB=$\sqrt{10}$,設(shè)二面角B-CM-A的平面角為α,則α的大小為( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.把一個三角形分割成幾個小正三角形,有兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,增加3個.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,增加5個.
請你運用上述兩種“基本分割法”,解決下列問題:

(1)把圖③的正三角形分割成9個小正三角形;
(2)把圖④的正三角形分割成10個小正三角形;
(3)把圖⑤的正三角形分割成11個小正三角形;
(4)把圖⑥的正三角形分割成12個小正三角形.

查看答案和解析>>

同步練習冊答案