相關(guān)習(xí)題
 0  225419  225427  225433  225437  225443  225445  225449  225455  225457  225463  225469  225473  225475  225479  225485  225487  225493  225497  225499  225503  225505  225509  225511  225513  225514  225515  225517  225518  225519  225521  225523  225527  225529  225533  225535  225539  225545  225547  225553  225557  225559  225563  225569  225575  225577  225583  225587  225589  225595  225599  225605  225613  266669 

科目: 來源: 題型:解答題

6.已知f(x)=|x-1|+a,a∈R,g(x)=|2x-1|.
(1)當a=2時,解關(guān)于x的不等式f(x)+g(x)≤5;
(2)當g(x)≤5時,關(guān)于x的不等式x•[f(x)-a]≤a2-a恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在三棱錐P-ABC中,PA=PB=PC=9$\sqrt{2}$,AB=8,AC=6.頂點P在平面ABC內(nèi)的射影為H,若$\overrightarrow{AH}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$且μ+2λ=1,則三棱錐P-ABC的外接球的體積為$\frac{243}{2}$π.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為8,將其正數(shù)零點從小到大依次構(gòu)成數(shù)列{an}(n∈N*).(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an•2${\;}^{\frac{1}{4}({a}_{n}+1)}$,求數(shù)列{bn}的前n項和Sn=b1+b2+b3+…+bn

查看答案和解析>>

科目: 來源: 題型:選擇題

3.下列函數(shù)中,y的最小值是4的是( 。
A.y=2x$+\frac{2}{x}$B.y=2x+4•2-x
C.y=$\frac{2({x}^{2}+5)}{\sqrt{{x}^{2}+4}}$D.y=$\frac{4}{sinx}+sinx(0<x<4)$

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知cos(2016π+α)=-$\frac{1}{5}$,那么cos2α=-$\frac{23}{25}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知a>0,設(shè)函數(shù)f(x)=$\frac{201{5}^{x+1}+2013}{201{5}^{x}+1}$(x∈[-a,a])的最大值為M,最小值為N,求M+N.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.任取一個五位數(shù),其能被5整除的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=4-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),再以原點為極點,以x軸正半軸為極軸建立坐標系,并使得它與直角坐標系有相同的長度單位,在該極坐標系中圓C的方程為ρ=4sinθ.
(1)求圓C的直角坐標方程;
(2)設(shè)圓C與直線l交于點A,B,若點M的坐標為(-2,1),求|MA|+|MB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,且f(1)=$\frac{1}{3}$,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在定義域上的單調(diào)性,并證明;
(3)求證:方程f(x)-lnx=0至少有一根在區(qū)間(1,3).

查看答案和解析>>

同步練習(xí)冊答案