相關(guān)習(xí)題
 0  225682  225690  225696  225700  225706  225708  225712  225718  225720  225726  225732  225736  225738  225742  225748  225750  225756  225760  225762  225766  225768  225772  225774  225776  225777  225778  225780  225781  225782  225784  225786  225790  225792  225796  225798  225802  225808  225810  225816  225820  225822  225826  225832  225838  225840  225846  225850  225852  225858  225862  225868  225876  266669 

科目: 來源: 題型:解答題

6.已知直線l過雙曲線$\frac{{x}^{2}}{4}$-y2=1的右焦點,且與雙曲線僅有一個公共交點,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知x1是函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x-($\frac{1}{2}$)x的零點,x2是函數(shù)g(x)=log2x-($\frac{1}{2}$)x的零點,則x1x2的取值范圍是(0,1).

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知x,y,z∈(-1,1),且xyz=$\frac{1}{36}$,求函數(shù)u=$\frac{1}{1-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$+$\frac{9}{9-{z}^{2}}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知3$\overrightarrow{a}$-2$\overrightarrow$=(-2,0,4),$\overrightarrow{c}$=(-2,1,2),$\overrightarrow{a}$•$\overrightarrow{c}$=2,且|$\overrightarrow$|=4.
(1)求cos<$\overrightarrow$,$\overrightarrow{c}$>;
(2)記$\overrightarrow2sc77y4$=(-2,0,4),確定實數(shù)k,使得($\overrightarrowwnvbi2f$+k$\overrightarrow{c}$)與($\overrightarrow7lg2whz$-2$\overrightarrow{c}$)互相垂直.

查看答案和解析>>

科目: 來源: 題型:解答題

2.函數(shù)f(x)=$\sqrt{{x}^{2}-2x+5}$+$\sqrt{{x}^{2}+6x+10}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.正項數(shù)列{an}的前n項和為Sn,且滿足Sn2=(n2-n)Sn+n3
(1)求an;
(2)記數(shù)列{$\frac{1}{n{S}_{n}}$}的前n項和為Tn,用數(shù)學(xué)歸納法證明:Tn≤$\frac{5}{4}$-$\frac{1}{2n(n+1)}$對一切n∈N*都成立.

查看答案和解析>>

科目: 來源: 題型:填空題

20.若sin(3π-α)=$\sqrt{2}$sin(2π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),且0<α<β<π,則sinα•sinβ=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且對任意的n∈N+,恒有Sn2=a13+a23+…+an3
(1)求a1,a2的值;
(2)猜想數(shù)列{an}的通項公式an,并給予證明.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域為一切實數(shù),則k的取值范圍是( 。
A.k>0或k≤-9B.k≥1C.-9≤k≤1D.0≤k≤1

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)f(x)=x2-2ax-a2-$\frac{3}{4}$,若對任意的x∈[0,1],均有|f(x)|≤1,則實數(shù)a的取值范圍是-$\frac{1}{2}$≤a≤$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案