相關(guān)習(xí)題
 0  226215  226223  226229  226233  226239  226241  226245  226251  226253  226259  226265  226269  226271  226275  226281  226283  226289  226293  226295  226299  226301  226305  226307  226309  226310  226311  226313  226314  226315  226317  226319  226323  226325  226329  226331  226335  226341  226343  226349  226353  226355  226359  226365  226371  226373  226379  226383  226385  226391  226395  226401  226409  266669 

科目: 來源: 題型:選擇題

10.給出下列結(jié)論:
①函數(shù)y=2x2-1在x=3處的導(dǎo)數(shù)為11;
②若物體的運(yùn)動(dòng)規(guī)律是x=f(t)(s表示路程),則物體在時(shí)刻t0的瞬時(shí)速度v等于f′(t0);
③物體運(yùn)動(dòng)時(shí),它的運(yùn)動(dòng)規(guī)律可以用函數(shù)v=v(t)描述,其中v表示瞬時(shí)速度,t表示時(shí)間,那么該物體運(yùn)動(dòng)的加速度a=$\underset{lim}{△t→0}$$\frac{v(t+△t)-v(t)}{△t}$;
④若f(x)=$\sqrt{x}$,則f(0)=0.
其中正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:填空題

9.函數(shù)y=sin($\frac{3π}{4}$-x)sin($\frac{3π}{4}$+x)的值域是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

8.記a=sin(cos2016°),b=sin(sin2016°),c=cos(sin2016°),d=cos(cos2016°),則( 。
A.d>c>b>aB.d>c>a>bC.c>d>b>aD.a>b>d>c

查看答案和解析>>

科目: 來源: 題型:解答題

7.證明:
(1)$\frac{1-2sin2xcos2x}{co{s}^{2}2x-si{n}^{2}2x}$=$\frac{1-tan2x}{1+tan2x}$;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(2-sin2α).

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知θ∈($\frac{5π}{4}$,$\frac{3π}{2}$),|cos2θ|=$\frac{1}{5}$,則sinθ的值為-$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0)的性質(zhì).ymax=A+k,ymin=-A+k.

查看答案和解析>>

科目: 來源: 題型:解答題

4.從圓C:(x-1)2+(y-1)2=1,外一點(diǎn)P(2,3)向該圓引切線,切點(diǎn)為A,B.
(1)求過點(diǎn)A,B,P三點(diǎn)的圓的方程;
(2)直線AB的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若函數(shù)f(x)=sin2xcosφ+cos2xsinφ(0<φ<$\frac{π}{2}$),且f(x)≤f($\frac{2π}{9}$),則φ的值為( 。
A.$\frac{2π}{9}$B.$\frac{π}{9}$C.$\frac{π}{18}$D.$\frac{π}{36}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積是πab,利用這一結(jié)論求${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1-2{x}^{2}}$dx等于(  )
A.$\frac{π}{4}$B.$\frac{\sqrt{2}π}{8}$C.$\frac{\sqrt{2}π}{4}$D.$\frac{\sqrt{2}π}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知sin(θ-$\frac{3}{2}π$)+cos($\frac{3}{2}π+θ$)=$\frac{3}{5}$,求sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ)的值.

查看答案和解析>>

同步練習(xí)冊答案