相關(guān)習(xí)題
 0  227342  227350  227356  227360  227366  227368  227372  227378  227380  227386  227392  227396  227398  227402  227408  227410  227416  227420  227422  227426  227428  227432  227434  227436  227437  227438  227440  227441  227442  227444  227446  227450  227452  227456  227458  227462  227468  227470  227476  227480  227482  227486  227492  227498  227500  227506  227510  227512  227518  227522  227528  227536  266669 

科目: 來源: 題型:解答題

4.某單位有員工60名,其中有男員工45名,女員工15名,按照分層抽樣的方法抽取4人去參加專業(yè)技術(shù)培訓(xùn).
(Ⅰ)求某員工被抽到的概率及參加培訓(xùn)的男、女員工的人數(shù);
(Ⅱ)經(jīng)過一個星期的學(xué)習(xí)、培訓(xùn),公司決定從參加培訓(xùn)的4名員工中選出2名員工做經(jīng)驗交流,方法是先從4名員工里選出1名來做經(jīng)驗交流,該員工做完后,再從剩下的員工中選1名做交流,求選出的2名員工中恰有1名女員工的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)$f(x)=2\sqrt{2}cosxsin(x+\frac{π}{4})$.
(Ⅰ)求函數(shù)f(x)的最小正周期及圖象的對稱軸方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知圓${C_1}:{x^2}+{y^2}-2x+4y-4=0$,圓${C_2}:{x^2}+{y^2}+2x+2y-2=0$,圓${C_3}:{x^2}+{y^2}-2x-2y-\frac{14}{5}=0$,則圓C1與圓C2的公共弦所在的直線被圓C3所截得的弦長為4.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為( 。
A.$[1,\frac{7}{5}]$B.$(1,\frac{7}{5}]$C.[1,2]D.(1,2]

查看答案和解析>>

科目: 來源: 題型:選擇題

20.下列函數(shù)中,最小正周期為π的偶函數(shù)是(  )
A.y=sin2x+cos2xB.$y=cos(2x+\frac{π}{2})$C.y=cos(2x-1)D.y=cos2x

查看答案和解析>>

科目: 來源: 題型:選擇題

19.拋物線x2=-2y的焦點坐標為( 。
A.$(0,-\frac{1}{8})$B.$(-\frac{1}{8},0)$C.$(0,-\frac{1}{2})$D.$(-\frac{1}{2},0)$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知z=2+i,(i是虛數(shù)單位),z的共軛復(fù)數(shù)是$\overline z$,則復(fù)數(shù)$\frac{\overline z}{i}$=( 。
A.-1-2iB.1-2iC.-1+2iD.1+2i

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項和為Sn,且a3=6,S7=56,數(shù)列{bn}前n項和為Tn,且2Tn-3bn+2=0.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)${c_n}=\left\{{\begin{array}{l}{{a_n},n為奇數(shù)}\\{{b_n},n為偶數(shù)}\end{array}}\right.$,求數(shù)列{cn}的前n項和Qn

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且$(sinA+sinB)(b-a)=sinC(\sqrt{3}b-c)$.
(Ⅰ)求角A的大。
(Ⅱ) 若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目: 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為[1,$\frac{7}{5}$].

查看答案和解析>>

同步練習(xí)冊答案