相關(guān)習(xí)題
 0  227698  227706  227712  227716  227722  227724  227728  227734  227736  227742  227748  227752  227754  227758  227764  227766  227772  227776  227778  227782  227784  227788  227790  227792  227793  227794  227796  227797  227798  227800  227802  227806  227808  227812  227814  227818  227824  227826  227832  227836  227838  227842  227848  227854  227856  227862  227866  227868  227874  227878  227884  227892  266669 

科目: 來源: 題型:選擇題

1.設(shè)集合A={x∈N|$\frac{1}{4}$≤2x≤16},B={x|y=ln(x2-3x)},則A∩B中元素的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

20.復(fù)數(shù)z=i2017,則z的虛部為( 。
A.-iB.iC.-1D.1

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x,y≥0\end{array}\right.$,若ax+by(a,b>0)的最大值是12,則a2+b2的最小值是$\frac{36}{13}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.(x2+x+y)5的展開式中,x4y2的系數(shù)為(  )
A.15B.25C.30D.50

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x=$\frac{2π}{3}$時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( 。
A.f(1)<f(-1)<f(0)B.f(0)<f(1)<f(-1)C.f(-1)<f(0)<f(1)D.f(1)<f(0)<f(-1)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知向量$\vec a=({2016,k}),\vec b=({k-2,2016})$的夾角為鈍角,則函數(shù)f(k)=k2+2k+2016的最小值為(  )
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目: 來源: 題型:選擇題

15.要得到函數(shù)y=sin(4x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=sin4x的圖象( 。
A.向左平移$\frac{π}{16}$個單位B.向右平移$\frac{π}{16}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(2+i)z=5i(其中i是虛數(shù)單位,滿足i2=-1),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面中對應(yīng)的點在第幾象限( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

13.函數(shù)y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$的反函數(shù)是( 。
A.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知平面上三點A、B、C滿足|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=$\sqrt{5}$,|$\overrightarrow{CA}$|=2$\sqrt{2}$,則$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值等于-8.

查看答案和解析>>

同步練習(xí)冊答案