相關(guān)習(xí)題
 0  227712  227720  227726  227730  227736  227738  227742  227748  227750  227756  227762  227766  227768  227772  227778  227780  227786  227790  227792  227796  227798  227802  227804  227806  227807  227808  227810  227811  227812  227814  227816  227820  227822  227826  227828  227832  227838  227840  227846  227850  227852  227856  227862  227868  227870  227876  227880  227882  227888  227892  227898  227906  266669 

科目: 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,橢圓的上頂點為D,右焦點為F2,延長DF2交橢圓于E,且滿足|DF2|=3|F2E|,橢圓的右焦點與拋物線y2=4x的焦點重合.
(1)試求橢圓的方程;
(2)過點F2的直線l和該橢圓交于A,B兩點,點C在橢圓上,O為坐標原點,且滿足$\overrightarrow{OC}=2\overrightarrow{OA}+3\overrightarrow{OB}$,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知橢圓C的中心在原點O,左焦點為F1(-1,0),左頂點為A,且F1為AO的中點.
(1)求橢圓C的方程;
(2)若橢圓C1方程為:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1(m>n>0)$,橢圓C2方程為:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=λ(λ>0,且λ≠1)$,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M,N,試求弦長|MN|的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知α,β是△ABC的兩銳角,且$(sinα+1)(1-\frac{1}{sinα})>(cosβ+1)(1-\frac{1}{cosβ})$,則△ABC的形狀為( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,且以坐標原點為圓心,橢圓的短半軸長為半徑的圓與直線$x-y+\sqrt{2}=0$相切.
(1)求橢圓C的標準方程;
(2)若一條不過原點的直線l與橢圓相交于A,B兩點,設(shè)直線OA,l,OB的斜率分別為k1,k,k2,且k1,k,k2恰好構(gòu)成等比數(shù)列.求|OA|2+|OB|2的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1與$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率分別為e1,e2,且e1+e2=$\sqrt{3}$,則e1e2=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)已知點A(a,0),B(0,b),直線l交橢圓C于P,Q兩點(點A,B位于直線l的兩側(cè))
(i)若直線l過坐標原點O,設(shè)直線AP,AQ,BP,BQ的斜率分別為k1,k2,k3,k4,求證:k1k2+k3k4為定值;
(ii)若直線l的斜率為$\frac{{\sqrt{3}}}{2}$,求四邊形APBQ的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

18.在平面直角坐標系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于第一、二象限內(nèi)的兩點分別為A,B,若△OAB的外接圓的圓心為$({0,\sqrt{2}a})$,則$\frac{a}$的值為2+$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上的點,它的一條漸近線方程為y=$\frac{3}{2}$x,兩焦點間距離為2$\sqrt{13}$,F(xiàn)1,F(xiàn)2分別是該雙曲線的左、右焦點,若|PF1|=3,則|PF2|=7.

查看答案和解析>>

科目: 來源: 題型:填空題

16.設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為$\frac{\sqrt{5}}{10}$.則E的離心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為4,設(shè)右焦點為F,過原點O的直線l與橢圓C交于A,B兩點,線段AF的中點為M,線段BF的中點為N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 若離心率e=$\frac{1}{2}$,求橢圓C的方程;
(Ⅱ) 求橢圓C的長軸長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案