相關習題
 0  227816  227824  227830  227834  227840  227842  227846  227852  227854  227860  227866  227870  227872  227876  227882  227884  227890  227894  227896  227900  227902  227906  227908  227910  227911  227912  227914  227915  227916  227918  227920  227924  227926  227930  227932  227936  227942  227944  227950  227954  227956  227960  227966  227972  227974  227980  227984  227986  227992  227996  228002  228010  266669 

科目: 來源: 題型:填空題

1.某公司為確定明年投入某產(chǎn)品廣告支出,對近5年的廣告支出m與銷售額t(單位:百萬元)進行了初步統(tǒng)計,得到下列表格中的數(shù)據(jù):
t3040p5070
m24568
經(jīng)測算,年廣告支出m和年銷售額t滿足線性回歸方程$\widehat{t}$=6.5m+17.5,則p的值為60.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  )
A.f(-17)<f(19)<f(40)B.f(40)<f(19)<f(-17)C.f(19)<f(40)<f(-17)D.f(-17)<f(40)<f(19)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.橢圓y2+$\frac{{x}^{2}}{{m}^{2}}$=1(0<m<1)上存在點P使得PF1⊥PF2,則m的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,1)B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-3x(x≥0)}\\{ln(1-x)(x<0)}\end{array}\right.$,若|f(x)+4|≥a(x-1),則a的取值范圍是( 。
A.[-1,3]B.[0,6]C.[0,5]D.[0,12]

查看答案和解析>>

科目: 來源: 題型:選擇題

17.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的焦點為F1、F2,點P在橢圓上,若|PF1|=3,則△PF1F2的面積為( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.4$\sqrt{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的兩條切線方程y=±$\frac{1}{2}$(x-4),切點分別為A、B,且切線與x軸的交點為T.
(1)求a的值;
(2)過T的直線l與橢圓C交于M,N兩點,與AB交于點D,求證:$\frac{|TD|}{|TM|}$+$\frac{|TD|}{|TN|}$為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.
(I)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)
(Ⅱ)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如表.
 學生序號i 1 2 3 45 6 7
 數(shù)學成績xi 60 65 70 75 85 87 90
 物理成績yi 70 77 80 85 90 8693
若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:填空題

14.從2,0,1,6四個數(shù)中隨機取兩個數(shù)組成一個兩位數(shù),并要求所取得較大的數(shù)為十位數(shù)字,較小的數(shù)為個位數(shù)字,則所組成的兩位數(shù)是奇數(shù)的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓的一個焦點為F(-$\sqrt{3}$,0),其離心率為$\frac{\sqrt{3}}{2}$.
(1)求該橢圓的標準方程;
(2)圓x2+y2=$\frac{4}{5}$的任一條切線與該橢圓均有兩個交點A、B,求證0A⊥0B.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,右頂點A(2,0).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點M,使得過M的直線l交橢圓于B、D兩點,且${k_{AB}}{k_{AD}}=-\frac{3}{4}$恒成立?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案