相關習題
 0  227863  227871  227877  227881  227887  227889  227893  227899  227901  227907  227913  227917  227919  227923  227929  227931  227937  227941  227943  227947  227949  227953  227955  227957  227958  227959  227961  227962  227963  227965  227967  227971  227973  227977  227979  227983  227989  227991  227997  228001  228003  228007  228013  228019  228021  228027  228031  228033  228039  228043  228049  228057  266669 

科目: 來源: 題型:解答題

3.畫出不等式組$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-3≤0}\\{|x|≤1}\end{array}\right.$ 表示的平面區(qū)域,并求其面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設x,y∈[$\frac{1}{3}$,1],則y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,點A是過F2且傾斜角為$\frac{π}{4}$的直線與雙曲線的一個交點,若△F1F2A為等腰直角三角形,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{3}+1$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目: 來源: 題型:解答題

20.設h(x)=x+$\frac{m}{x}$,x∈[$\frac{1}{4}$,5],其中m是不等于零的常數(shù),
(1)m=1時,直接寫出h(x)的值域;
(2)求h(x)的單調遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=nin{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f1(x)=cosx,x∈[0,π],則,f2(x)=1,x∈[0,π],
(理)當m=1時,設M(x)=$\frac{h(x)+h(4x)}{2}$+$\frac{|h(x)-h(4x)|}{2}$,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的值為n,n∈[0,4).

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知點O為坐標原點,點M在雙曲線C:x2-y2=λ(λ為正常數(shù))上,過點M作雙曲線C的某一條漸近線的垂線,垂足為N,則|ON|+2|MN|的最小值為2$\sqrt{λ}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點左、右分別為F1、F2,點P是雙曲線上一點,且$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,P到原點的距離為2,則△PF1F2的面積的取值范圍是(  )
A.(0,2)B.(1,2)C.(2,4)D.(0,4)

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知O,A,B,C,P在同一平面上,設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,其中$\overrightarrow{a}$,$\overrightarrow$為單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,($\overrightarrow{c}$-$\overrightarrow{a}$)•(2$\overrightarrow{c}$-$\overrightarrow$)=0,$\overrightarrow{OP}$=$λ\overrightarrow{OA}$+$μ\overrightarrow{OB}$(1≤λ,μ≤2),則|$\overrightarrow{CP}$|的取值范圍是$[\frac{\sqrt{19}-\sqrt{3}}{4},\frac{\sqrt{127}+\sqrt{3}}{4}]$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{5}}{2}$,過右焦點F作漸近線的垂線,垂足為A,若△OFA的面積為2,其中O為坐標原點,則雙曲線的焦距為(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.2$\sqrt{15}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=log3(2x+1)+$\frac{a}{lo{g}_{3}({2}^{x}+1)}$,給出如下兩個命題:
p1:若a=-2,則y=f(x)在($\frac{2}{3}$,+∞)上只有一個零點;
p2:?a∈[-2,-$\frac{1}{2}$],函數(shù)y=|f(x)|在[-$\frac{1}{2}$,3]上單調遞增;
則下列命題正確的是( 。
A.¬p1B.(¬p1)∨p2C.p1∧p2D.p1∧(¬p2

查看答案和解析>>

同步練習冊答案