相關(guān)習(xí)題
 0  228176  228184  228190  228194  228200  228202  228206  228212  228214  228220  228226  228230  228232  228236  228242  228244  228250  228254  228256  228260  228262  228266  228268  228270  228271  228272  228274  228275  228276  228278  228280  228284  228286  228290  228292  228296  228302  228304  228310  228314  228316  228320  228326  228332  228334  228340  228344  228346  228352  228356  228362  228370  266669 

科目: 來源: 題型:填空題

16.在復(fù)平面上復(fù)數(shù)-3-2i,-4+5i,2+i所對應(yīng)的點(diǎn)分別是A、B、C,則平行四邊形ABCD的對角線BD所對應(yīng)的復(fù)數(shù)是7-11i.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.如果命題P(n)對n=k成立,則它對n=k+1也成立,現(xiàn)已知P(n)對n=4不成立,則下列結(jié)論正確的是( 。
A.P(n)對n∈N*成立B.P(n)對n>4且n∈N*成立
C.P(n)對n=5成立D.P(n)對n=3不成立

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知Sn為數(shù)列{an}的前n項(xiàng)和,且a1=1,a2=3,an+2=3an,則S2016=(  )
A.2×(31008-1)B.2×31008C.$\frac{{{3^{2016}}-1}}{2}$D.$\frac{{{3^{2016}}+1}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.向量$\overrightarrow{O{Z_1}}$對應(yīng)的復(fù)數(shù)是5-4i,向量$\overrightarrow{O{Z_2}}$對應(yīng)的復(fù)數(shù)是-5+4i,則向量$\overrightarrow{{Z_1}{Z_2}}$對應(yīng)的復(fù)數(shù)是( 。
A.-10+8iB.10-8iC.-8+10iD.8+-10i

查看答案和解析>>

科目: 來源: 題型:填空題

12.2015年4月22日,亞非領(lǐng)導(dǎo)人會議在印尼雅加達(dá)舉行,某五國領(lǐng)導(dǎo)人A、B、C、D、E除B與E、D與E不單獨(dú)會晤外,其他領(lǐng)導(dǎo)人兩兩之間都要單獨(dú)會晤.現(xiàn)安排他們在兩天的上午、下午單獨(dú)會晤(每人每個半天最多只進(jìn)行一次會晤),那么安排他們單獨(dú)會晤的不同方法共有48種.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)=|x+2|,g(x)=a-|x-4|,若函數(shù)f(x)的圖象恒在函數(shù)g(x)的圖象的上方,則實(shí)數(shù)a的取值范圍是(-∞,6).

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知拋物線Г:y2=2px(p>0)的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),準(zhǔn)線為x=-1,傾斜角為銳角的直線l過點(diǎn)F且交拋物線于A(x,1,y1),B(x2,y2)兩點(diǎn)(其中y1<0,y2>0),與y軸交于C點(diǎn).
(Ⅰ)M是拋物線Г在第一象限上的動點(diǎn),則當(dāng)$\frac{|MO|}{|MF|}$取得最大值時,試確定點(diǎn)M的坐標(biāo);
(Ⅱ)證明:點(diǎn)($\frac{|CA|}{|AF|}$,$\frac{|CB|}{|BF|}$)在直線x-y+1=0上.

查看答案和解析>>

科目: 來源: 題型:填空題

9.拋物線C:y2=4x的準(zhǔn)線與x軸交于M,過焦點(diǎn)F作傾斜角為60°的直線與C交于A,B兩點(diǎn),則tan∠AMB=4$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知圓心在y軸上,半徑為$\sqrt{2}$的圓O位于x軸上側(cè),且與直線x+y=0相切,則圓O的方程是x2+(y-2)2=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.函數(shù)f(x)在[a,b]上有定義,若對任意x1,x2∈[a,b],有$f({\frac{{{x_1}+{x_2}}}{2}})≤\frac{1}{2}[{f({x_1})+f({x_2})}]$,則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出如下命題:
①若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
②對任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
③f(x)在[1,3]上的圖象是連續(xù)不斷的;
④f(x2)在$[{1,\sqrt{3}}]$上具有性質(zhì)P;
其中真命題的序號是( 。
A.①②B.①③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊答案