相關(guān)習(xí)題
 0  228211  228219  228225  228229  228235  228237  228241  228247  228249  228255  228261  228265  228267  228271  228277  228279  228285  228289  228291  228295  228297  228301  228303  228305  228306  228307  228309  228310  228311  228313  228315  228319  228321  228325  228327  228331  228337  228339  228345  228349  228351  228355  228361  228367  228369  228375  228379  228381  228387  228391  228397  228405  266669 

科目: 來源: 題型:選擇題

17.雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點(diǎn)為F(c,0),若圓C:(x-c)2+y2=4a2與雙曲線E的漸近線相切,則E的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

16.在三棱錐P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱錐P-ABC的外接球的表面積為8π,則該三棱錐的體積為$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知O為坐標(biāo)原點(diǎn),過雙曲線${x^2}-\frac{y^2}{a^2}=1$上的點(diǎn)P(1,0)作兩條漸近線的平行線,交兩漸近線分別于A,B兩點(diǎn),若平行四邊形OBPA的面積為1,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

14.M,N分別為雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1左、右支上的點(diǎn),設(shè)$\overrightarrow{v}$是平行于x軸的單位向量,則|$\overrightarrow{MN}$•$\overrightarrow{v}$|的最小值為4.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過拋物線C2:y2=2px(p>0)的焦點(diǎn),且雙曲線的漸近線與拋物線的準(zhǔn)線圍成一個(gè)等邊三角形,則雙曲線C1的離心率是( 。
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.用更相減損術(shù)求得81與135的最大公約數(shù)是(  )
A.54B.27C.9D.81

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=AC=2,AA1=4
(Ⅰ)過BC的截面交AA1于P點(diǎn),若△PBC為等邊三角形,求出點(diǎn)P的位置;
(Ⅱ)在(Ⅰ)條件下,求四棱錐P-BCC1B1與三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知雙曲線C:$\frac{x^2}{16}-\frac{y^2}{b^2}=1({b>0})$的右焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,則雙曲線C的漸近線方程為(  )
A.4x±3y=0B.3x±4y=0C.16x±9y=0D.9x±16y=0

查看答案和解析>>

科目: 來源: 題型:解答題

9.棱長為1的正方體ABCD-A1B1C1D1中,沿平面A1ACC1將正方體分成兩部分,其中一部分如圖所示,過直線A1C的平面A1CM與線段BB1交于點(diǎn)M.
(Ⅰ)當(dāng)M與B1重合時(shí),求證:MC⊥AC1;
(Ⅱ)當(dāng)平面A1CM⊥平面A1ACC1時(shí),求平面A1CM分幾何體所得兩部分體積之比.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知雙曲線C的兩條漸近線為l1,l2,過右焦點(diǎn)F作FB∥l1且交l2于點(diǎn)B,過點(diǎn)B作BA⊥l2且交于l1于點(diǎn)A,若AF⊥x軸,則雙曲線C的離心率為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案